QUASISYMMETRIC CONJUGACY OF ANALYTIC CIRCLE HOMEOMORPHISMS TO ROTATIONS

M.R. HERMAN

VERY VERY PRELIMINARY VERSION¹

1. We denote by $\mathcal{D}^{0,\omega}(\mathbb{T}^1)$ the monoïd

$$\left\{ f \in \mathcal{D}^0(\mathbb{T}^1), \ f : \mathbb{R} \to \mathbb{R} \text{ is } \mathbb{R}\text{-analytic} \right\}$$

where

$$\mathcal{D}^{0}(\mathbb{T}^{1}) = \left\{ f \in \operatorname{Homeo}_{+}(\mathbb{R}), \ f(x+1) = f(x) + 1, \forall x \in \mathbb{R} \right\}.$$

Theorem 1. If $f \in \mathcal{D}^{0,\omega}(\mathbb{T}^1)$, and $\rho(f) = \alpha$ is a bounded type number, then

 $f = h \circ R_{\alpha} \circ h^{-1}$ where $h \in \mathcal{D}^{qs}(\mathbb{T}^1)$

i.e. h is a quasisymmetric homeomorphism of $\mathcal{D}^0(\mathbb{T}^1)$ and $R_{\alpha}(x) = x + \alpha$.

2. If $\alpha \in \mathbb{R} - \mathbb{Q}$, we denote by $(p_n/q_n)_{n \ge 0}$ the convergents of α . We set

$$\hat{f}^{q_n} = f^{q_n} - p_n, I_n(x) = [x, \hat{f}^{q_n}(x)], J_n(x) = [x, \hat{f}^{2q_n}(x)].$$

We recall that the intervals

(1) $f^{j}(I_{n}(x)) \mod 1$ for $0 \leq j < q_{n+1}$

have pairwise disjoint interiors, and

(2) $f^{j}(I_{n}(x)) \mod 1$ for $0 \leq j < 2q_{n+1}$

is a cover of \mathbb{T}^1 of multiplicity at most 2.

(0) Also, if $p/q \in \mathbb{Q}$ with (p,q) = 1 is a convergent of α , then -p/q is a convergent of $-\alpha$.

Date: 1987 ?

¹Translation by Arnaud Chéritat, 2005

3.

 $\mathbf{2}$

Proposition 1. We assume that $f \in \mathcal{D}^0(\mathbb{T}^1)$ satisfies:

- $\rho(f) = \alpha$ is a bounded type number;
- There exists $C_1 > 1$ such that for all $n \ge 0$ and $y \in [0, 1]$,

(4)
$$\frac{1}{C_1} \leqslant \frac{|J_n(y)|}{\left|\widehat{f}^{-2q_n}(J_n(y))\right|} \leqslant C_1;$$

then $f = h \circ R_{\alpha} \circ h^{-1}$ where $h \in \mathcal{D}^{qs}(\mathbb{T}^1)$ and $\widehat{f}^{q_n} = f^{q_n} - p_n$.

The proof is the same as that of [1]. It is not hard to prove that (4) implies $f = h \circ R_{\alpha} \circ h^{-1}$ with $h \in \mathcal{D}^0(\mathbb{T}^1)$. We can also in theorem 1 use the theorem of J.C. Yoccoz if we prefer.

We have, if n is even (if n is odd we reverse the orientation) the following order of the points²:

We argue as in [1] using that (4) and $\sup a_{n+1} < +\infty$ imply that all the intervals $(y_{2kq_n}, y_{2(k+1)q_n})$ in the figure have length ratio bounded from above and from below. Almost all that follows is essentially done by Świątek [2], with the exception of § 8 and 9 (Świątek reasons only about the periodic cycles when $\rho(f) = p/q \in \mathbb{Q}$ and does not look at the case $\rho(f) = \alpha \in \mathbb{R} - \mathbb{Q}$ neither at (4) but it follows very easily from what he does).

4. We denote by $\mathcal{L} = \{(a, b, \dots, d) \in \mathbb{R}^4, a < b < c < d\}$. If $l \in \mathcal{L}$, we set

$$b(l) = \frac{b-a}{c-a} \left/ \frac{d-b}{d-c} \right|.$$

It is the cross ratio of the 4 points

(the cross ratio of (a, b, c, d) is equal to $\frac{c-a}{c-b} / \frac{d-a}{d-b}$).

If $l_1 = b - a$, $l_2 = c - b$, $l_3 = d - c$ we have

$$b(l) = \frac{l_1}{l_1 + l_2} \frac{l_3}{l_2 + l_3}$$

where

(5) b(l) < 1.

²where $x \in \mathbb{R}$, y = h(x), $x_k = \widehat{R}^k_{\alpha}(x)$ and $y_k = \widehat{f}^k_{\alpha}(y) = h(x_k)$

If $l_2 \leq l_1, l_2 \leq l_3$,

(6)
$$b(l) = \frac{1}{1 + \frac{l_2}{l_1}} \frac{1}{1 + \frac{l_2}{l_3}} \ge \frac{1}{4}$$

If $0 < \delta \leq b(l)$, we have $b(l) \leq l_1/l_2$, $b(l) \leq l_3/l_2$, and thus

(7)
$$\frac{l_2}{l_1} \leqslant \delta^{-1}$$

(8) $\frac{l_3}{l_2} \geqslant \delta$.

5. If $l \in \mathcal{L}$ and $h \in \mathcal{D}^0(\mathbb{T}^1)$,

$$D(l,h) = \frac{b(h(l))}{b(l)}.$$

where if l = (a, b, c, d) then h(l) = (h(a), h(b), h(c), h(d)). We have if $h, g \in \mathcal{D}^0(\mathbb{T}^1)$:

$$D(l, h \circ g) = D(g(l), h) D(l, g)$$
(9)
$$D(l, h^{n}) = \prod_{j=0}^{n-1} D(h^{j}(l), h).$$

If $h \in \mathcal{D}^1(\mathbb{T}^1)$ there exists $1 \leq C(h) < +\infty$ such that for all $l \in \mathcal{L}$ we have $C(h)^{-1} \leq D(h, l) \leq C(h)$

where

$$(C(h))^{1/4} \leq \sup (\|Df\|_{C^0}, \|(Df)^{-1}\|_{C^0})$$

suits by the mean value theorem.

6.

Proposition 2. If $f \in \mathcal{D}^{0,\omega}(\mathbb{T}^1)$ then (10) sup

(10)
$$\sup_{l \in \mathcal{L}} D(l, f) < +\infty.$$

 $\underline{\text{Proof}}$: Let

We set if $l \in \mathcal{L}_1$

$$b(l) = \frac{b-a}{c-a}.$$

It is enough to prove

(11)
$$\sup_{l \in \mathcal{L}_1} \mathcal{D}(l, f) < +\infty$$

to get the proposition.

If $l \in \mathcal{L}_1$

(12)
$$D(l,f) = \frac{c-a}{f(c)-f(a)} \frac{f(b)-f(a)}{b-a}.$$

If $\delta > 0$ is fixed, by uniform continuity of f^{-1} , we have

(13)
$$\sup_{\substack{l \in \mathcal{L}_1 \\ c-a \ge \delta}} \mathcal{D}(l, f) < +\infty$$

(we bound $\frac{f(b)-f(a)}{b-a}$ from above by $\|Df\|_{C^0}$). Let $0 \leq \check{c}_1 < \ldots < \check{c}_k < 1$ be the critical points of f on $[0,1[, \varepsilon > 0 \text{ and } t])$

 $U_{2\varepsilon} = \{x, |x - \check{c}_j| < 2\varepsilon, j = 1, \dots, k\}.$

We assume $\varepsilon > 0$ is small enough for $U_{2\varepsilon}$ to be a union of k disjoint (14)intervals and we assume that $\check{c}_{j+1} - \check{c}_j - 4\varepsilon > 2\varepsilon$, $j = 1, \ldots, k$ with the convention $\check{c}_{k+1} = \check{c}_1 + 1.$

If $c - a \ge \varepsilon$ we bound (12) from above using (13).

If $c - a \leq \varepsilon$ and the interval (a, c) is not included in $U_{2\varepsilon}$ we bound (12) from above by

$$\|Df\|_{C^0} \quad \sup_{y \notin U_{\varepsilon}} \frac{1}{Df(y)}.$$

If $c - a \leq \varepsilon$ and the interval $(a, c) \subset U_{2\varepsilon}$, up to assuming $\varepsilon > 0$ small enough, we can pre-compose f by an analytic diffeomorphism h on a neighborhood of \check{c}_i satisfying $h(\check{c}_j) = \check{c}_j$ and boil down to proving (11) for g_s where

$$g_s(x) = x^n + s$$

with $n \in \mathbb{N}^*$, n odd and $s \in \mathbb{R}$. It is enough to prove (11) for $g = x^n$. We set $b = a + l_1, c = a + l_1 + l_2, l_j > 0$. If a = 0 we have

$$\mathbf{D}(l,g) \leqslant 1 \qquad l = (0,b,c,+\infty).$$

If $a \neq 0$. We set

$$\frac{l_1}{a} = x_1, \quad \frac{l_2}{a} = x_2$$

 $x_1 \cdot x_2 > 0$ and $l = (a, b, c, +\infty)$. We have

$$D(l,g) = \frac{P(x_1+1)}{P(x_1+x_2+1)}$$

where $P(x) = 1 + \cdots + x^{n-1}$. Since n is odd, we have P(x) > 0 (if P(g) = 0 then $z^n = 1, z \neq 1$).

If $x_1 > 0$, since $x_2 > 0$ we have

$$\frac{P(x_1+1)}{P(x_1+x_2+1)} < 1.$$

If $x_1 < -A$ with $A \gg 1$ since $x_2 < 0$, the map $x_2 \mapsto P(x_1 + x_2 + 1)$ is non increasing. We have

$$\frac{P(x_1+1)}{P(x_1+x_2+1)} \leqslant 1.$$

With $-A < x_1 < 0$ we have

$$\frac{P(x_1+1)}{P(x_1+x_2+1)} \leqslant \sup_{|x| < A} P(x+1) / \inf_{x \in \mathbb{R}} P(x) < +\infty.$$

_

7. We have the theorem of G. Świątek

Theorem 2. We fix an integer $p \ge 2$, $f \in \mathcal{D}^{0,\omega}(\mathbb{T}^1)$, then there exists C(f,p) > 1such that if $(l_i)_{0 \leq i \leq j-1}$ satisfies: $l_i \in \mathcal{L}$, $l_i = (a_i, b_i, c_i, d_i)$, every $x \in \mathbb{T}^1$ belongs to at most p intervals $(a_i, d_i) \mod 1$; then

$$\prod_{i=0}^{j-1} \mathcal{D}(l_i, f) \leqslant C(f, p).$$

The important point is that C(f, p) does not depend on $(l_i)_{0 \le i \le j-1}$ nor j.

<u>Proof</u>: see pages 6-8.

8.

Corollary. If $f \in \mathcal{D}^{0,\omega}(\mathbb{T}^1)$, $\rho(f) = \alpha \in \mathbb{R} - \mathbb{Q}$ then there exists $C_1(f) \ge 1$ such that for all $x \in \mathbb{R}$, if

$$l(x) = \begin{cases} (\hat{f}^{-q_n}(x), x, \hat{f}^{q_n}(x), \hat{f}^{2q_n}(x)) & n \ even\\ (\hat{f}^{2q_n}(x), \hat{f}^{q_n}(x), x, \hat{f}^{-q_n}(x)) & n \ odd \end{cases}$$

then for all $0 \leq j < pq_{n+1}$ and $p \in \mathbb{N}^*$ we have

(15)
$$D(l(x), f^j) \leq C_1(f)^p.$$

<u>Proof</u>: If p = 1 this results from (1), (9) and the previous theorem. The case p = 1 with 5 implies the corollary.

9. <u>Proof of theorem 1</u>.

It is enough to prove (4). Let z be such that $|\hat{f}^{q_n}(z) - z| = \min_{x \in \mathbb{R}} |\hat{f}^{q_n(x)} - x|$. We have

$$b(l(z)) = D(f^{-j}(l(z)), f^j) b(f^{-j}(l(z)))$$

By (15) and (6), if $0 \leq j < pq_{n+1}, p \in \mathbb{N}^*$

(16)
$$\frac{1}{4} \leq b(\boldsymbol{l}(\boldsymbol{z})) \leq C_1(f)^p \ b(f^{-j}(\boldsymbol{l}(\boldsymbol{z}))).$$

For $j \in \mathbb{N}$, we set

$$z_{-j} = f^{-j}(z) \bmod 1.$$

If $k \in \mathbb{Z}$ and j is fixed we agree that³

$$\boldsymbol{z}_{-j+\boldsymbol{k}q_n} = \widehat{f}^{\boldsymbol{k}q_n}(\boldsymbol{z}_{-j}),$$

with the convention $z_0 = z$ and obvious abuses of notation.

We fix

$$p = 7$$
 and $\delta_0 = \frac{1}{4(C_1(f))^7}$.

Up to reversing the orientation we may assume that n is even. The points z_{-j+iq_n} are ordered in \mathbb{R} for $i \ge 0$, $i \in \mathbb{N}$, as follows:

$$z_{-j-iq_n} < z_{-j-(i-1)q_n} < \ldots < z_{-j} < z_{-j+q_n} < z_{-j+2q_n}.$$

For $0 \leq j < 7q_{n+1}$ we have using (16), (7) and (8)

(17)
$$\frac{-z_{-j+q_n} + z_{-j+2q_n}}{z_{-j+q_n} - z_{-j}} \ge \delta_0 ,$$

(18)
$$\frac{-z_{-j} + z_{-j+q_n}}{z_{-j} - z_{-j-q_n}} \leqslant \delta_0^{-1} .$$

³In the original, there is a distinction between $Z_{...}$ and $z_{...}$

M.R. HERMAN

We consider the points z_{-j+iq_n} , $i = -4, \ldots, 1$ and $y \in (z_{-j-2q_n}, z_{-j-q_n})$

If $0 < j < 2q_{n+1}$ and $y_{kq_n} = \widehat{f}^k(y)$ then the points are ordered as in the figure above. Let $a_1 = z_{-j-3q_n} - z_{-j-4q_n}, \ldots, a_5 = z_{-j+q_n} - z_{-j}$. By (17) and (18) we have

$$\delta_0 \leqslant \frac{a_{i+1}}{a_i} \leqslant \delta_0^{-1}, \quad i = 1, \dots, 4.$$

Whence

$$\frac{z_{-j} - z_{-j-q_n}}{z_{-j-q_n} - z_{-j-4q_n}} \leqslant \frac{-y + y_{2q_n}}{y - y_{-2q_n}} \leqslant \frac{z_{-j+q_n} - z_{-j-2q_n}}{z_{-j-2q_n} - z_{-j-3q_n}}$$

and thus

(19)
$$C(\delta_0)^{-1} \leqslant \frac{-y + y_{2q_n}}{y - y_{-2q_n}} \leqslant C(\delta_0)$$

where $C(\delta_0) > 1$ is a constant which depends only on δ_0 .

By (2) and (0), for all $y \in \mathbb{T}^1$, there exists $0 \leq j < 2q_{n+1}$ such that

$$y \in (z_{-j-2q_n}, z_{-j-q_n}) \mod 1.$$

Inequality (19) implies (4) and presupposes only that $\rho(f) = \alpha \in \mathbb{R} - \mathbb{Q}$. Theorem 1 follows from proposition 1 when α is a bounded type number.

Remarks

1. Inequality (4) is true when $f \in \mathcal{D}^{0,\omega}(\mathbb{T}^1)$, $\rho(f) = \alpha \in \mathbb{R} - \mathbb{Q}$. (4) implies the result of J. C. Yoccoz [3] i.e. Denjoy's theorem.

2. Inequality (4) together with the inequality of J. C. Yoccoz when $f \in \mathcal{D}^{0,\omega}(\mathbb{T}^1)$, $\rho(f) = \alpha \in \mathbb{R} - \mathbb{Q}$

$$C(\delta_0) \ge \frac{\left| f^{2q_n}(I_n(y)) \right|}{\left| I_n(y) \right|} \ge C_2(f) \left(Df^{4q_n}(y) \right)^{1/2}$$

where $C_2(f)$ is a positive constant, independent from n. This implies that the map $\overline{f} : \mathbb{T}^1 \to \mathbb{T}^1$ induced on \mathbb{T}^1 by f is conservative for Haar's measure m: if B is m-measurable then the sets $(\overline{f}^{-j}(B))_{j \in \mathbb{N}}$ are not pairwise disjoint when m(B) > 0.

Proof of theorem 2.

We assume $\varepsilon > 0$ small enough satisfying (14) and on $U_{2\varepsilon} - \{c_1, \ldots, c_k\}$, $S_f < 0$ $(\Rightarrow \frac{1}{\sqrt{Df}}$ is strictly convex on $U_{2\varepsilon} - \{c_1, \ldots, c_k\}$). We set $J = \{0, \ldots, j-1\}$. Let

$$J_1 = \{ i \in J, \ d_i - a_i \ge \varepsilon \}.$$

We have

$$\#J_1 \leqslant \frac{p}{\varepsilon}$$

and by proposition 2

$$\prod_{i \in J_1} D(l_i, f) \leqslant K_1(f, p)$$

where K_1, K_2, K_3 are constants which depend only on f and p. Let

 $J_2 = \{i \in J - J_1, (a_i, d_i) \text{ mod } 1 \text{ contains a critical point } \check{c}_{k_1} \text{ of } f \text{ on } [0, 1[\}.$

We have

$$\#J_2 \leqslant pk$$

where

$$k = #\{$$
critical points of f on $[0, 1[\}$.

Proposition 2 implies

$$\prod_{i \in J_2} D(l_i, f) \leqslant K_2(f, p).$$

Let

$$J_3 = \{i \in J - J_1 - J_2, (a_i, d_i) \text{ is not contained in } U_{2\varepsilon}\}.$$

We have

$$\log \prod_{i \in J_3} D(l_i, f) \leqslant \sum_{i \in J_3} 2 \operatorname{var}_{[a_i, d_i]}(\log Df) \leqslant 2p \operatorname{var}_{[0, 1] - U_{\varepsilon}} \log(Df) < \log \left(K_3(f, p)\right).$$

Let

$$J_4 = J - J_1 - J_2 - J_3.$$

If $i \in J_4$, $(a_i, b_i) \subset U_{2\varepsilon}$. By the next lemma,

$$\prod_{i \in J_4} D(l_i, f) \leqslant 1$$

and we can take $C(f,p) = K_1 K_2 K_3$ where C(f,p) is independent of the l_i and of the integer j.

Lemma. Let $f : [a, d] \to \mathbb{R}$ C^3 , Df > 0 and satisfying

$$S(f) = \frac{D^3 f}{Df} - \frac{3}{2} \left(\frac{D^2 f}{Df}\right)^2 < 0$$

(and thus $\frac{1}{\sqrt{Df}}$ is strictly convex). If l = a < b < c < d then we have

$$D(l,f) \leqslant 1.$$

<u>Proof</u>: Composing f on the left and on the right by affine maps we may assume that

$$a = 0$$
 $d = 1$
 $f(0) = 0$ $f(1) = 1$

Let

$$\phi_{\lambda}(x) = \frac{x}{\lambda x + 1 - \lambda}, \quad 1 - \frac{1}{\lambda} \notin [0, 1].$$

We have $\phi_{\lambda}(0) = 0$, $\phi_{\lambda}(1) = 1$, ϕ_{λ} preserves cross ratios and if 0 < x < 1,

$$\phi_{\lambda}(x) \longrightarrow 0 \quad \text{if} \quad \lambda \longrightarrow -\infty, \\ \phi_{\lambda}^{-1}(x) \longrightarrow 1 \quad \text{if} \quad \lambda \longrightarrow -\infty.$$

Considering

we have

$$D(l,\phi_{\lambda}^{\pm 1} \circ f) = D(l, \mathbf{f}).$$

 $\phi_{\lambda}^{\pm 1} \circ f = f_{\lambda}$

We may assume that $f = f_{\lambda}$ satisfies

$$f(0) = 0 < f(b) = b < c < f(1) = 1,$$

Sf < 0.

Since $\frac{1}{\sqrt{Df}}$ is strictly convex, f has no fixed point apart from 0, b and 1. We want to show that f(c) > c. If we had f(c) < c we would have f(x) < x on]b, 1[and f(x) > x on]0, b[(if we had f(x) < x on]0, b[by Rolle's theorem, there would exist

M.R. HERMAN

 $0 < y_1 < b < y_2 < 1$ such that we have $Df(y_1) = Df(b) = Df(y_2)$). We therefore have $Df(b) \leq 1$, $Df(0) \geq 1$ and $Df(1) \geq 1$. This contradicts $Df(b) > \min(Df(0), Df(1)).$

References

- [1] M.R. Herman. Conjugaison quasi symétrique des difféomorphismes du cercle à des rotations et applications aux disques singuliers de Siegel. Manuscrit.⁴
- [2] G. Świątek. Rational rotation numbers for maps of the circle. Preprint, Univ. Varsovie.⁵
 [3] J.C. Yoccoz. Il n'y a pas de contre-exemple de Denjoy analytique. CRAS t. 298 (1984),
- [5] J.C. TOCCOZ. If n y u pus ue contre-exemple ue Denjoy unauguque. CRAS t. 298 (196 141–144.

$^{4}1986$? 5 Published: Comm. Math. Phys., 119 (1988) 109–128.