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M.R. HERMAN

Very very preliminary version1

1. We denote by D0,ω(T1) the monöıd{
f ∈ D0(T1), f : R → R is R-analytic

}
where

D0(T1) =
{
f ∈ Homeo+(R), f(x + 1) = f(x) + 1,∀x ∈ R

}
.

Theorem 1. If f ∈ D0,ω(T1), and ρ(f) = α is a bounded type number, then

f = h ◦Rα ◦ h−1 where h ∈ Dqs(T1)

i.e. h is a quasisymmetric homeomorphism of D0(T1) and Rα(x) = x + α.

2. If α ∈ R−Q, we denote by (pn/qn)n>0 the convergents of α. We set

f̂qn = fqn − pn,

In(x) = [x, f̂qn(x)],

Jn(x) = [x, f̂2qn(x)].

We recall that the intervals

(1) f j(In(x)) mod 1 for 0 6 j < qn+1

have pairwise disjoint interiors, and

(2) f j(In(x)) mod 1 for 0 6 j < 2qn+1

is a cover of T1 of multiplicity at most 2.
(0) Also, if p/q ∈ Q with (p, q) = 1 is a convergent of α, then −p/q is a convergent
of −α.

Date: 1987 ?
1Translation by Arnaud Chéritat, 2005
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3.

Proposition 1. We assume that f ∈ D0(T1) satisfies:
• ρ(f) = α is a bounded type number;
• There exists C1 > 1 such that for all n > 0 and y ∈ [0, 1],

(4)
1
C1

6
|Jn(y)|∣∣∣f̂−2qn(Jn(y))

∣∣∣ 6 C1;

then f = h ◦Rα ◦ h−1 where h ∈ Dqs(T1) and f̂qn = fqn − pn.

The proof is the same as that of [1]. It is not hard to prove that (4) implies
f = h ◦ Rα ◦ h−1 with h ∈ D0(T1). We can also in theorem 1 use the theorem of
J.C. Yoccoz if we prefer.

We have, if n is even (if n is odd we reverse the orientation) the following order
of the points2:

� � �� �� �
y-2qn

� �
y

� �
bf2qn

##
y2qn

� �
bf2qn

##
y4qn

� �
y2an+1qn

� �
y-2qn-1

� �
y2(an+1+1)qn

�

�
x2qn+1

� �
x-2an+1qn

� �
x-4qn

� �
x-2qn

h

OO

� �

x

h

OO

� �

bR2qn
α

;;
x2qn

...

� �

bR2qn
α

;;
x4qn

h

OO

� �
x2an+1qn

� �
x-2qn-1

� �
x2(an+1+1)qn

�

We argue as in [1] using that (4) and sup an+1 < +∞ imply that all the intervals
(y2kqn

, y2(k+1)qn
) in the figure have length ratio bounded from above and from

below. Almost all that follows is essentially done by Świa̧tek [2], with the exception
of § 8 and 9 (Świa̧tek reasons only about the periodic cycles when ρ(f) = p/q ∈ Q
and does not look at the case ρ(f) = α ∈ R − Q neither at (4) but it follows very
easily from what he does).

4. We denote by L =
{
(a, b, . . . , d) ∈ R4, a < b < c < d

}
. If l ∈ L, we set

b(l) =
b− a

c− a

/
d− b

d− c
.

It is the cross ratio of the 4 points

(b, c, a, d)

(the cross ratio of (a, b, c, d) is equal to c−a
c−b

/
d−a
d−b ).

a

� l1 �

b

� l2 �

c

� l3 �

d

If l1 = b− a, l2 = c− b, l3 = d− c we have

b(l) =
l1

l1 + l2

l3
l2 + l3

where
(5) b(l) < 1.

2where x ∈ R, y = h(x), xk = bRk
α(x) and yk = bfk

α(y) = h(xk)
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If l2 6 l1, l2 6 l3,

(6) b(l) =
1

1 + l2
l1

1
1 + l2

l3

>
1
4

If 0 < δ 6 b(l), we have b(l) 6 l1/l2, b(l) 6 l3/l2, and thus

(7)
l2
l1

6 δ−1

(8)
l3
l2

> δ.

5. If l ∈ L and h ∈ D0(T1),

D(l, h) =
b
(
h(l)

)
b(l)

.

where if l = (a, b, c, d) then h(l) = (h(a), h(b), h(c), h(d)). We have if h, g ∈ D0(T1):

D
(
l, h ◦ g

)
= D

(
g(l), h

)
D

(
l, g

)
(9) D(l, hn) =

n−1∏
j=0

D
(
hj(l), h

)
.

If h ∈ D1(T1) there exists 1 6 C(h) < +∞ such that for all l ∈ L we have

C(h)−1 6 D(h, l) 6 C(h)

where (
C(h)

)1/4
6 sup

(
‖Df‖C0 , ‖(Df)−1‖C0

)
suits by the mean value theorem.

6.

Proposition 2. If f ∈ D0,ω(T1) then

(10) sup
l∈L

D(l, f) < +∞.

Proof: Let

L1 =
{
(a, b, c, +∞), −∞ < a < b < c < +∞

}
L2 =

{
(−∞, b, c, d), −∞ < b < c < d < +∞

}
We set if l ∈ L1

b(l) =
b− a

c− a
.

It is enough to prove
(11) sup

l∈L1

D(l, f) < +∞

to get the proposition.
If l ∈ L1

(12) D(l, f) =
c− a

f(c)− f(a)
f(b)− f(a)

b− a
.

If δ > 0 is fixed, by uniform continuity of f−1, we have

(13) sup
l∈L1

c−a>δ

D(l, f) < +∞
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(we bound f(b)−f(a)
b−a from above by ‖Df‖C0).

Let 0 6 č1 < . . . < čk < 1 be the critical points of f on [0, 1[, ε > 0 and

U2ε =
{
x, |x− čj | < 2ε, j = 1, . . . , k

}
.

(14) We assume ε > 0 is small enough for U2ε to be a union of k disjoint
intervals and we assume that čj+1 − čj − 4ε > 2ε, j = 1, . . . , k with the convention
čk+1 = č1 + 1.

If c− a > ε we bound (12) from above using (13).
If c − a 6 ε and the interval (a, c) is not included in U2ε we bound (12) from

above by

‖Df‖C0 sup
y/∈Uε

1
Df(y)

.

If c − a 6 ε and the interval (a, c) ⊂ U2ε, up to assuming ε > 0 small enough,
we can pre-compose f by an analytic diffeomorphism h on a neighborhood of čj

satisfying h(čj) = čj and boil down to proving (11) for gs where

gs(x) = xn + s

with n ∈ N∗, n odd and s ∈ R. It is enough to prove (11) for g = xn. We set
b = a + l1, c = a + l1 + l2, lj > 0. If a = 0 we have

D(l, g) 6 1 l = (0, b, c,+∞).

If a 6= 0. We set
l1
a

= x1,
l2
a

= x2,

x1 · x2 > 0 and l = (a, b, c, +∞). We have

D(l, g) =
P (x1 + 1)

P (x1 + x2 + 1)

where P (x) = 1 + · · ·+ xn−1. Since n is odd, we have P (x) > 0 (if P (g) = 0 then
zn = 1, z 6= 1).

If x1 > 0, since x2 > 0 we have

P (x1 + 1)
P (x1 + x2 + 1)

< 1.

If x1 < −A with A � 1 since x2 < 0, the map x2 7→ P (x1 + x2 + 1) is non
increasing. We have

P (x1 + 1)
P (x1 + x2 + 1)

6 1.

With −A < x1 < 0 we have

P (x1 + 1)
P (x1 + x2 + 1)

6 sup
|x|<A

P (x + 1)/ inf
x∈R

P (x) < +∞.

�

7. We have the theorem of G. Świa̧tek

Theorem 2. We fix an integer p > 2, f ∈ D0,ω(T1), then there exists C(f, p) > 1
such that if (li)06i6j−1 satisfies: li ∈ L, li = (ai, bi, ci, di), every x ∈ T1 belongs to
at most p intervals (ai, di) mod 1; then

j−1∏
i=0

D(li, f) 6 C(f, p).



QUASISYMMETRIC CONJUGACY OF Cω CIRCLE HOMEOMORPHISMS 5

The important point is that C(f, p) does not depend on (li)06i6j−1 nor j.

Proof: see pages 6–8.

8.

Corollary. If f ∈ D0,ω(T1), ρ(f) = α ∈ R − Q then there exists C1(f) > 1 such
that for all x ∈ R, if

l(x) =

{ (
f̂−qn(x), x, f̂qn(x), f̂2qn(x)

)
n even(

f̂2qn(x), f̂qn(x), x, f̂−qn(x)
)

n odd

then for all 0 6 j < pqn+1 and p ∈ N∗ we have

(15) D(l(x), f j) 6 C1(f)p.

Proof: If p = 1 this results from (1), (9) and the previous theorem. The case p = 1
with 5 implies the corollary. �

9. Proof of theorem 1.

It is enough to prove (4). Let z be such that |f̂qn(z)− z| = min
x∈R

|f̂qn(x) − x|. We

have

b
(
l(z)

)
= D

(
f−j

(
l(z)

)
, f j

)
b
(
f−j

(
l(z)

))
.

By (15) and (6), if 0 6 j < pqn+1, p ∈ N∗

(16)
1
4

6 b(l(z)) 6 C1(f)p b
(
f−j(l(z))

)
.

For j ∈ N, we set

z−j = f−j(z) mod 1.

If k ∈ Z and j is fixed we agree that3

z−j+kqn
= f̂kqn(z−j),

with the convention z0 = z and obvious abuses of notation.
We fix

p = 7 and δ0 =
1

4
(
C1(f)

)7 .

Up to reversing the orientation we may assume that n is even. The points z−j+iqn

are ordered in R for i > 0, i ∈ N, as follows:

z−j−iqn < z−j−(i−1)qn
< . . . < z−j < z−j+qn < z−j+2qn .

For 0 6 j < 7qn+1 we have using (16), (7) and (8)

(17)
−z−j+qn

+ z−j+2qn

z−j+qn − z−j
> δ0 ,

(18)
−z−j + z−j+qn

z−j − z−j−qn

6 δ−1
0 .

3In the original, there is a distinction between Z... and z...
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We consider the points z−j+iqn
, i = −4, . . . , 1 and y ∈ (z−j−2qn

, z−j−qn
).

y−2qn

��

y−qn

��

y

��

yqn

��

y2qn

��� � � � � � � � � � �

z−j−4qn

OO

z−j−3qn

OO

z−j−2qn

OO

z−j−qn

OO

z−j

OO

z−j+qn

OO

If 0 < j < 2qn+1 and ykqn
= f̂k(y) then the points are ordered as in the figure

above. Let a1 = z−j−3qn
− z−j−4qn

, . . . , a5 = z−j+qn
− z−j . By (17) and (18) we

have
δ0 6

ai+1

ai
6 δ−1

0 , i = 1, . . . , 4.

Whence
z−j − z−j−qn

z−j−qn − z−j−4qn

6
−y + y2qn

y − y−2qn

6
z−j+qn

− z−j−2qn

z−j−2qn − z−j−3qn

and thus
(19) C(δ0)−1 6

−y + y2qn

y − y−2qn

6 C(δ0)

where C(δ0) > 1 is a constant which depends only on δ0.
By (2) and (0), for all y ∈ T1, there exists 0 6 j < 2qn+1 such that

y ∈ (z−j−2qn
, z−j−qn

) mod 1.

Inequality (19) implies (4) and presupposes only that ρ(f) = α ∈ R−Q. Theorem 1
follows from proposition 1 when α is a bounded type number.

Remarks
1. Inequality (4) is true when f ∈ D0,ω(T1), ρ(f) = α ∈ R−Q. (4) implies the

result of J. C. Yoccoz [3] i.e. Denjoy’s theorem.
2. Inequality (4) together with the inequality of J. C. Yoccoz when f ∈ D0,ω(T1),

ρ(f) = α ∈ R−Q

C(δ0) >

∣∣f2qn(In(y))
∣∣∣∣In(y)

∣∣ > C2(f)
(
Df4qn(y)

)1/2

where C2(f) is a positive constant, independant from n. This implies that the map
f : T1 → T1 induced on T1 by f is conservative for Haar’s measure m: if B is
m-measurable then the sets

(
f
−j

(B)
)
j∈N are not pairwise disjoint when m(B) > 0.

Proof of theorem 2.

We assume ε > 0 small enough satisfying (14) and on U2ε − {c1, . . . , ck}, Sf < 0
(⇒ 1√

Df
is strictly convex on U2ε − {c1, . . . , ck}). We set J = {0, . . . , j − 1}. Let

J1 =
{
i ∈ J, di − ai > ε

}
.

We have
#J1 6

p

ε
and by proposition 2 ∏

i∈J1

D(li, f) 6 K1(f, p)

where K1, K2, K3 are constants which depend only on f and p. Let

J2 =
{
i ∈ J − J1, (ai, di) mod 1 contains a critical point čk1 of f on [0, 1[

}
.



QUASISYMMETRIC CONJUGACY OF Cω CIRCLE HOMEOMORPHISMS 7

We have
#J2 6 pk

where
k = #{critical points of f on [0, 1[}.

Proposition 2 implies ∏
i∈J2

D(li, f) 6 K2(f, p).

Let
J3 =

{
i ∈ J − J1 − J2, (ai, di) is not contained in U2ε

}
.

We have

log
∏
i∈J3

D(li, f) 6
∑
i∈J3

2 var[ai,di](log Df) 6 2p var
[0,1]−Uε

log(Df) < log
(
K3(f, p)

)
.

Let
J4 = J − J1 − J2 − J3.

If i ∈ J4, (ai, bi) ⊂ U2ε. By the next lemma,∏
i∈J4

D(li, f) 6 1

and we can take C(f, p) = K1K2K3 where C(f, p) is independant of the li and of
the integer j. �

Lemma. Let f : [a, d] → R C3, Df > 0 and satisfying

S(f) =
D3f

Df
− 3

2

(
D2f

Df

)2

< 0

(and thus 1√
Df

is strictly convex). If l = a < b < c < d then we have

D(l, f) 6 1.

Proof: Composing f on the left and on the right by affine maps we may assume
that

a = 0 d = 1
f(0) = 0 f(1) = 1.

Let
φλ(x) =

x

λx + 1− λ
, 1− 1

λ
/∈ [0, 1].

We have φλ(0) = 0, φλ(1) = 1, φλ preserves cross ratios and if 0 < x < 1,

φλ(x) −→ 0 if λ −→ −∞,

φ−1
λ (x) −→ 1 if λ −→ −∞.

Considering
φ±1

λ ◦ f = fλ

we have
D(l, φ±1

λ ◦ f) = D(l, f).
We may assume that f = fλ satisfies

f(0) = 0 < f(b) = b < c < f(1) = 1,

Sf < 0.

Since 1√
Df

is strictly convex, f has no fixed point apart from 0, b and 1. We want
to show that f(c) > c. If we had f(c) < c we would have f(x) < x on ]b, 1[ and
f(x) > x on ]0, b[ (if we had f(x) < x on ]0, b[ by Rolle’s theorem, there would exist
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0 < y1 < b < y2 < 1 such that we have Df(y1) = Df(b) = Df(y2)). We therefore
have Df(b) 6 1, Df(0) > 1 and Df(1) > 1. This contradicts

Df(b) > min
(
Df(0), Df(1)

)
.

�
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