QUASISYMMETRIC CONJUGACY OF ANALYTIC CIRCLE HOMEOMORPHISMS TO ROTATIONS

M.R. HERMAN

VERY VERY PRELIMINARY VERSION1

1. We denote by $\mathcal{D}^{0, \omega}\left(\mathbb{T}^{1}\right)$ the monoiid

$$
\left\{f \in \mathcal{D}^{0}\left(\mathbb{T}^{1}\right), f: \mathbb{R} \rightarrow \mathbb{R} \text { is } \mathbb{R} \text {-analytic }\right\}
$$

where

$$
\mathcal{D}^{0}\left(\mathbb{T}^{1}\right)=\left\{f \in \text { Homeo }_{+}(\mathbb{R}), f(x+1)=f(x)+1, \forall x \in \mathbb{R}\right\} .
$$

Theorem 1. If $f \in \mathcal{D}^{0, \omega}\left(\mathbb{T}^{1}\right)$, and $\rho(f)=\alpha$ is a bounded type number, then

$$
f=h \circ R_{\alpha} \circ h^{-1} \quad \text { where } \quad h \in \mathcal{D}^{\mathrm{qs}}\left(\mathbb{T}^{1}\right)
$$

i.e. h is a quasisymmetric homeomorphism of $\mathcal{D}^{0}\left(\mathbb{T}^{1}\right)$ and $R_{\alpha}(x)=x+\alpha$.
2. If $\alpha \in \mathbb{R}-\mathbb{Q}$, we denote by $\left(p_{n} / q_{n}\right)_{n \geqslant 0}$ the convergents of α. We set

$$
\begin{aligned}
\widehat{f}^{q_{n}} & =f^{q_{n}}-p_{n}, \\
I_{n}(x) & =\left[x, \widehat{f}^{q_{n}}(x)\right], \\
J_{n}(x) & =\left[x, \widehat{f}^{2 q_{n}}(x)\right] .
\end{aligned}
$$

We recall that the intervals
(1) $f^{j}\left(I_{n}(x)\right) \bmod 1$ for $0 \leqslant j<q_{n+1}$
have pairwise disjoint interiors, and
(2) $f^{j}\left(I_{n}(x)\right) \bmod 1$ for $0 \leqslant j<2 q_{n+1}$
is a cover of \mathbb{T}^{1} of multiplicity at most 2 .
(0) Also, if $p / q \in \mathbb{Q}$ with $(p, q)=1$ is a convergent of α, then $-p / q$ is a convergent of $-\alpha$.

3.

Proposition 1. We assume that $f \in \mathcal{D}^{0}\left(\mathbb{T}^{1}\right)$ satisfies:

- $\rho(f)=\alpha$ is a bounded type number;
- There exists $C_{1}>1$ such that for all $n \geqslant 0$ and $y \in[0,1]$,

$$
\text { (4) } \frac{1}{C_{1}} \leqslant \frac{\left|J_{n}(y)\right|}{\left|\widehat{f}^{-2 q_{n}}\left(J_{n}(y)\right)\right|} \leqslant C_{1} \text {; }
$$

then $f=h \circ R_{\alpha} \circ h^{-1}$ where $h \in \mathcal{D}^{\mathrm{qs}}\left(\mathbb{T}^{1}\right)$ and $\widehat{f}^{q_{n}}=f^{q_{n}}-p_{n}$.
The proof is the same as that of 11. It is not hard to prove that (4) implies $f=h \circ R_{\alpha} \circ h^{-1}$ with $h \in \mathcal{D}^{0}\left(\mathbb{T}^{1}\right)$. We can also in theorem 1 use the theorem of J.C. Yoccoz if we prefer.

We have, if n is even (if n is odd we reverse the orientation) the following order of the points ${ }^{2}$,

We argue as in [1] using that (4) and sup $a_{n+1}<+\infty$ imply that all the intervals $\left(y_{2 k q_{n}}, y_{2(k+1) q_{n}}\right)$ in the figure have length ratio bounded from above and from below. Almost all that follows is essentially done by Siwia̧tek [2], with the exception of $\S 8$ and 9 (Świạtek reasons only about the periodic cycles when $\rho(f)=p / q \in \mathbb{Q}$ and does not look at the case $\rho(f)=\alpha \in \mathbb{R}-\mathbb{Q}$ neither at (4) but it follows very easily from what he does).
4. We denote by $\mathcal{L}=\left\{(a, b, \ldots, d) \in \mathbb{R}^{4}, a<b<c<d\right\}$. If $l \in \mathcal{L}$, we set

$$
b(l)=\frac{b-a}{c-a} / \frac{d-b}{d-c} .
$$

It is the cross ratio of the 4 points

$$
(b, c, a, d)
$$

(the cross ratio of (a, b, c, d) is equal to $\frac{c-a}{c-b} / \frac{d-a}{d-b}$).

If $l_{1}=b-a, l_{2}=c-b, l_{3}=d-c$ we have

$$
b(l)=\frac{l_{1}}{l_{1}+l_{2}} \frac{l_{3}}{l_{2}+l_{3}}
$$

where

$$
(5) \quad b(l)<1
$$

[^0]If $l_{2} \leqslant l_{1}, l_{2} \leqslant l_{3}$,
(6) $b(l)=\frac{1}{1+\frac{l_{2}}{l_{1}}} \frac{1}{1+\frac{l_{2}}{l_{3}}} \geqslant \frac{1}{4}$

If $0<\delta \leqslant b(l)$, we have $b(l) \leqslant l_{1} / l_{2}, b(l) \leqslant l_{3} / l_{2}$, and thus

$$
\begin{aligned}
& \text { (7) } \frac{l_{2}}{l_{1}} \leqslant \delta^{-1} \\
& \text { (8) } \frac{l_{3}}{l_{2}} \geqslant \delta
\end{aligned}
$$

5. If $l \in \mathcal{L}$ and $h \in \mathcal{D}^{0}\left(\mathbb{T}^{1}\right)$,

$$
D(l, h)=\frac{b(h(l))}{b(l)}
$$

where if $l=(a, b, c, d)$ then $h(l)=(h(a), h(b), h(c), h(d))$. We have if $h, g \in \mathcal{D}^{0}\left(\mathbb{T}^{1}\right)$:

$$
\begin{aligned}
& \mathrm{D}(l, h \circ g)=\mathrm{D}(g(l), h) \mathrm{D}(l, g) \\
& (9) \quad \mathrm{D}\left(l, h^{n}\right)=\prod_{j=0}^{n-1} \mathrm{D}\left(h^{j}(l), h\right)
\end{aligned}
$$

If $h \in \mathcal{D}^{1}\left(\mathbb{T}^{1}\right)$ there exists $1 \leqslant C(h)<+\infty$ such that for all $l \in \mathcal{L}$ we have

$$
C(h)^{-1} \leqslant \mathrm{D}(h, l) \leqslant C(h)
$$

where

$$
(C(h))^{1 / 4} \leqslant \sup \left(\|D f\|_{C^{0}},\left\|(D f)^{-1}\right\|_{C^{0}}\right)
$$

suits by the mean value theorem.
6.

Proposition 2. If $f \in \mathcal{D}^{0, \omega}\left(\mathbb{T}^{1}\right)$ then

$$
\text { (10) } \sup _{l \in \mathcal{L}} \mathrm{D}(l, f)<+\infty .
$$

Proof: Let

$$
\begin{aligned}
\mathcal{L}_{1} & =\{(a, b, c,+\infty),-\infty<a<b<c<+\infty\} \\
\mathcal{L}_{2} & =\{(-\infty, b, c, d),-\infty<b<c<d<+\infty\}
\end{aligned}
$$

We set if $l \in \mathcal{L}_{1}$

$$
b(l)=\frac{b-a}{c-a} .
$$

It is enough to prove

$$
\text { (11) } \sup _{l \in \mathcal{L}_{1}} \mathrm{D}(l, f)<+\infty
$$

to get the proposition. If $l \in \mathcal{L}_{1}$

$$
\text { (12) } \mathrm{D}(l, f)=\frac{c-a}{f(c)-f(a)} \frac{f(b)-f(a)}{b-a} \text {. }
$$

If $\delta>0$ is fixed, by uniform continuity of f^{-1}, we have

$$
\begin{equation*}
\sup _{\substack{l \in \mathcal{L}_{1} \\ c-a \geqslant \delta}} \mathrm{D}(l, f)<+\infty \tag{13}
\end{equation*}
$$

(we bound $\frac{f(b)-f(a)}{b-a}$ from above by $\|D f\|_{C^{0}}$).
Let $0 \leqslant \check{c}_{1}<\ldots<\check{c}_{k}<1$ be the critical points of f on $[0,1[, \varepsilon>0$ and

$$
U_{2 \varepsilon}=\left\{x,\left|x-\check{c}_{j}\right|<2 \varepsilon, j=1, \ldots, k\right\}
$$

(14) We assume $\varepsilon>0$ is small enough for $U_{2 \varepsilon}$ to be a union of k disjoint intervals and we assume that $\check{c}_{j+1}-\check{c}_{j}-4 \varepsilon>2 \varepsilon, j=1, \ldots, k$ with the convention $\check{c}_{k+1}=\check{c}_{1}+1$.

If $c-a \geqslant \varepsilon$ we bound (12) from above using (13)
If $c-a \leqslant \varepsilon$ and the interval (a, c) is not included in $U_{2 \varepsilon}$ we bound (12) from above by

$$
\|D f\|_{C^{0}} \sup _{y \notin U_{\varepsilon}} \frac{1}{D f(y)}
$$

If $c-a \leqslant \varepsilon$ and the interval $(a, c) \subset U_{2 \varepsilon}$, up to assuming $\varepsilon>0$ small enough, we can pre-compose f by an analytic diffeomorphism h on a neighborhood of \check{c}_{j} satisfying $h\left(\check{c}_{j}\right)=\check{c}_{j}$ and boil down to proving (11) for g_{s} where

$$
g_{s}(x)=x^{n}+s
$$

with $n \in \mathbb{N}^{*}, n$ odd and $s \in \mathbb{R}$. It is enough to prove (11) for $g=x^{n}$. We set $b=a+l_{1}, c=a+l_{1}+l_{2}, l_{j}>0$. If $a=0$ we have

$$
\mathrm{D}(l, g) \leqslant 1 \quad l=(0, b, c,+\infty)
$$

If $a \neq 0$. We set

$$
\frac{l_{1}}{a}=x_{1}, \quad \frac{l_{2}}{a}=x_{2}
$$

$x_{1} \cdot x_{2}>0$ and $l=(a, b, c,+\infty)$. We have

$$
\mathrm{D}(l, g)=\frac{P\left(x_{1}+1\right)}{P\left(x_{1}+x_{2}+1\right)}
$$

where $P(x)=1+\cdots+x^{n-1}$. Since n is odd, we have $P(x)>0$ (if $P(g)=0$ then $\left.z^{n}=1, z \neq 1\right)$.

If $x_{1}>0$, since $x_{2}>0$ we have

$$
\frac{P\left(x_{1}+1\right)}{P\left(x_{1}+x_{2}+1\right)}<1
$$

If $x_{1}<-A$ with $A \gg 1$ since $x_{2}<0$, the map $x_{2} \mapsto P\left(x_{1}+x_{2}+1\right)$ is non increasing. We have

$$
\frac{P\left(x_{1}+1\right)}{P\left(x_{1}+x_{2}+1\right)} \leqslant 1 .
$$

With $-A<x_{1}<0$ we have

$$
\frac{P\left(x_{1}+1\right)}{P\left(x_{1}+x_{2}+1\right)} \leqslant \sup _{|x|<A} P(x+1) / \inf _{x \in \mathbb{R}} P(x)<+\infty
$$

7. We have the theorem of G. Świa̧tek

Theorem 2. We fix an integer $p \geqslant 2, f \in \mathcal{D}^{0, \omega}\left(\mathbb{T}^{1}\right)$, then there exists $C(f, p)>1$ such that if $\left(l_{i}\right)_{0 \leqslant i \leqslant j-1}$ satisfies: $l_{i} \in \mathcal{L}, l_{i}=\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$, every $x \in \mathbb{T}^{1}$ belongs to at most p intervals $\left(a_{i}, d_{i}\right) \bmod 1$; then

$$
\prod_{i=0}^{j-1} \mathrm{D}\left(l_{i}, f\right) \leqslant C(f, p)
$$

The important point is that $C(f, p)$ does not depend on $\left(l_{i}\right)_{0 \leqslant i \leqslant j-1}$ nor j.
Proof: see pages 68

8.

Corollary. If $f \in \mathcal{D}^{0, \omega}\left(\mathbb{T}^{1}\right), \rho(f)=\alpha \in \mathbb{R}-\mathbb{Q}$ then there exists $C_{1}(f) \geqslant 1$ such that for all $x \in \mathbb{R}$, if

$$
l(x)= \begin{cases}\left(\widehat{f}^{-q_{n}}(x), x, \widehat{f}^{q_{n}}(x), \widehat{f}^{2 q_{n}}(x)\right) & n \text { even } \\ \left(\widehat{f}^{2 q_{n}}(x), \widehat{f}^{q_{n}}(x), x, \widehat{f}^{-q_{n}}(x)\right) & n \text { odd }\end{cases}
$$

then for all $0 \leqslant j<p q_{n+1}$ and $p \in \mathbb{N}^{*}$ we have

$$
\text { (15) } \quad \mathrm{D}\left(l(x), f^{j}\right) \leqslant C_{1}(f)^{p}
$$

Proof: If $p=1$ this results from (1) (9) and the previous theorem. The case $p=1$ with 5 implies the corollary.

9. Proof of theorem 1 .

It is enough to prove (4) Let z be such that $\left|\widehat{f}^{q_{n}}(z)-z\right|=\min _{x \in \mathbb{R}}\left|\widehat{f}^{q_{n}(x)}-x\right|$. We have

$$
b(l(z))=\mathrm{D}\left(f^{-j}(l(z)), f^{j}\right) b\left(f^{-j}(l(z))\right)
$$

By (15) and (6), if $0 \leqslant j<p q_{n+1}, p \in \mathbb{N}^{*}$

$$
\text { (16) } \frac{1}{4} \leqslant b(l(z)) \leqslant C_{1}(f)^{p} b\left(f^{-j}(l(z))\right) \text {. }
$$

For $j \in \mathbb{N}$, we set

$$
z_{-j}=f^{-j}(z) \bmod 1
$$

If $k \in \mathbb{Z}$ and j is fixed we agree that ${ }^{3}$

$$
z_{-j+k q_{n}}=\widehat{f}^{k q_{n}}\left(z_{-j}\right),
$$

with the convention $z_{0}=z$ and obvious abuses of notation.
We fix

$$
p=7 \text { and } \delta_{0}=\frac{1}{4\left(C_{1}(f)\right)^{7}}
$$

Up to reversing the orientation we may assume that n is even. The points $z_{-j+i q_{n}}$ are ordered in \mathbb{R} for $i \geqslant 0, i \in \mathbb{N}$, as follows:

$$
z_{-j-i q_{n}}<z_{-j-(i-1) q_{n}}<\ldots<z_{-j}<z_{-j+q_{n}}<z_{-j+2 q_{n}}
$$

For $0 \leqslant j<7 q_{n+1}$ we have using (16), (7) and (8)

$$
\begin{aligned}
\text { (17) } \frac{-z_{-j+q_{n}}+z_{-j+2 q_{n}}}{z_{-j+q_{n}}-z_{-j}} & \geqslant \delta_{0} \\
\text { (18) } \frac{-z_{-j}+z_{-j+q_{n}}}{z_{-j}-z_{-j-q_{n}}} & \leqslant \delta_{0}^{-1}
\end{aligned}
$$

[^1]We consider the points $z_{-j+i q_{n}}, i=-4, \ldots, 1$ and $y \in\left(z_{-j-2 q_{n}}, z_{-j-q_{n}}\right)$.

If $0<j<2 q_{n+1}$ and $y_{k q_{n}}=\widehat{f}^{k}(y)$ then the points are ordered as in the figure above. Let $a_{1}=z_{-j-3 q_{n}}-z_{-j-4 q_{n}}, \ldots, a_{5}=z_{-j+q_{n}}-z_{-j}$. By (17) and (18) we have

$$
\delta_{0} \leqslant \frac{a_{i+1}}{a_{i}} \leqslant \delta_{0}^{-1}, \quad i=1, \ldots, 4
$$

Whence

$$
\frac{z_{-j}-z_{-j-q_{n}}}{z_{-j-q_{n}}-z_{-j-4 q_{n}}} \leqslant \frac{-y+y_{2 q_{n}}}{y-y_{-2 q_{n}}} \leqslant \frac{z_{-j+q_{n}}-z_{-j-2 q_{n}}}{z_{-j-2 q_{n}}-z_{-j-3 q_{n}}}
$$

and thus

$$
\begin{equation*}
C\left(\delta_{0}\right)^{-1} \leqslant \frac{-y+y_{2 q_{n}}}{y-y_{-2 q_{n}}} \leqslant C\left(\delta_{0}\right) \tag{19}
\end{equation*}
$$

where $C\left(\delta_{0}\right)>1$ is a constant which depends only on δ_{0}.
By (2) and (0), for all $y \in \mathbb{T}^{1}$, there exists $0 \leqslant j<2 q_{n+1}$ such that

$$
y \in\left(z_{-j-2 q_{n}}, z_{-j-q_{n}}\right) \bmod 1
$$

Inequality (19) implies (4) and presupposes only that $\rho(f)=\alpha \in \mathbb{R}-\mathbb{Q}$. Theorem 1 follows from proposition 1 when α is a bounded type number.

Remarks

1. Inequality (4) is true when $f \in \mathcal{D}^{0, \omega}\left(\mathbb{T}^{1}\right), \rho(f)=\alpha \in \mathbb{R}-\mathbb{Q}$. (4) implies the result of J. C. Yoccoz 3] i.e. Denjoy's theorem.
2. Inequality (4) together with the inequality of J. C. Yoccoz when $f \in \mathcal{D}^{0, \omega}\left(\mathbb{T}^{1}\right)$, $\rho(f)=\alpha \in \mathbb{R}-\mathbb{Q}$

$$
C\left(\delta_{0}\right) \geqslant \frac{\left|f^{2 q_{n}}\left(I_{n}(y)\right)\right|}{\left|I_{n}(y)\right|} \geqslant C_{2}(f)\left(D f^{4 q_{n}}(y)\right)^{1 / 2}
$$

where $C_{2}(f)$ is a positive constant, independant from n. This implies that the map $\bar{f}: \mathbb{T}^{1} \rightarrow \mathbb{T}^{1}$ induced on \mathbb{T}^{1} by f is conservative for Haar's measure m : if B is m-measurable then the sets $\left(\bar{f}^{-j}(B)\right)_{j \in \mathbb{N}}$ are not pairwise disjoint when $m(B)>0$.

Proof of theorem 2

We assume $\varepsilon>0$ small enough satisfying (14) and on $U_{2 \varepsilon}-\left\{c_{1}, \ldots, c_{k}\right\}, S_{f}<0$ $\left(\Rightarrow \frac{1}{\sqrt{D f}}\right.$ is strictly convex on $\left.U_{2 \varepsilon}-\left\{c_{1}, \ldots, c_{k}\right\}\right)$. We set $J=\{0, \ldots, j-1\}$. Let

$$
J_{1}=\left\{i \in J, d_{i}-a_{i} \geqslant \varepsilon\right\} .
$$

We have

$$
\# J_{1} \leqslant \frac{p}{\varepsilon}
$$

and by proposition 2

$$
\prod_{i \in J_{1}} D\left(l_{i}, f\right) \leqslant K_{1}(f, p)
$$

where K_{1}, K_{2}, K_{3} are constants which depend only on f and p. Let

$$
J_{2}=\left\{i \in J-J_{1}, \quad\left(a_{i}, d_{i}\right) \bmod 1 \text { contains a critical point } \check{c}_{k_{1}} \text { of } f \text { on }[0,1[\} .\right.
$$

We have

$$
\# J_{2} \leqslant p k
$$

where

$$
k=\#\{\text { critical points of } f \text { on }[0,1[\}
$$

Proposition 2 implies

$$
\prod_{i \in J_{2}} D\left(l_{i}, f\right) \leqslant K_{2}(f, p)
$$

Let

$$
J_{3}=\left\{i \in J-J_{1}-J_{2},\left(a_{i}, d_{i}\right) \text { is not contained in } U_{2 \varepsilon}\right\}
$$

We have

$$
\log \prod_{i \in J_{3}} D\left(l_{i}, f\right) \leqslant \sum_{i \in J_{3}} 2 \operatorname{var}_{\left[a_{i}, d_{i}\right]}(\log D f) \leqslant 2 p_{[0,1]-U_{\varepsilon}}^{\operatorname{var}} \log (D f)<\log \left(K_{3}(f, p)\right) .
$$

Let

$$
J_{4}=J-J_{1}-J_{2}-J_{3}
$$

If $i \in J_{4},\left(a_{i}, b_{i}\right) \subset U_{2 \varepsilon}$. By the next lemma,

$$
\prod_{i \in J_{4}} D\left(l_{i}, f\right) \leqslant 1
$$

and we can take $C(f, p)=K_{1} K_{2} K_{3}$ where $C(f, p)$ is independant of the l_{i} and of the integer j.
Lemma. Let $f:[a, d] \rightarrow \mathbb{R} \quad C^{3}, D f>0$ and satisfying

$$
S(f)=\frac{D^{3} f}{D f}-\frac{3}{2}\left(\frac{D^{2} f}{D f}\right)^{2}<0
$$

(and thus $\frac{1}{\sqrt{D f}}$ is strictly convex). If $l=a<b<c<d$ then we have

$$
D(l, f) \leqslant 1
$$

Proof: Composing f on the left and on the right by affine maps we may assume that

$$
\begin{array}{rlrl}
a & =0 & d & =1 \\
f(0) & =0 & f(1) & =1 .
\end{array}
$$

Let

$$
\phi_{\lambda}(x)=\frac{x}{\lambda x+1-\lambda}, \quad 1-\frac{1}{\lambda} \notin[0,1] .
$$

We have $\phi_{\lambda}(0)=0, \phi_{\lambda}(1)=1, \phi_{\lambda}$ preserves cross ratios and if $0<x<1$,

$$
\begin{aligned}
& \phi_{\lambda}(x) \longrightarrow 0 \text { if } \\
& \phi_{\lambda}^{-1}(x) \longrightarrow 1 \text { if } \\
& \hline
\end{aligned}
$$

Considering

$$
\phi_{\lambda}^{ \pm 1} \circ f=f_{\lambda}
$$

we have

$$
D\left(l, \phi_{\lambda}^{ \pm 1} \circ f\right)=D(l, f)
$$

We may assume that $f=f_{\lambda}$ satisfies

$$
\begin{aligned}
& f(0)=0<f(b)=b<c<f(1)=1 \\
& S f<0
\end{aligned}
$$

Since $\frac{1}{\sqrt{D f}}$ is strictly convex, f has no fixed point apart from $0, b$ and 1 . We want to show that $f(c)>c$. If we had $f(c)<c$ we would have $f(x)<x$ on $] b, 1[$ and $f(x)>x$ on $] 0, b[$ (if we had $f(x)<x$ on $] 0, b[$ by Rolle's theorem, there would exist
$0<y_{1}<b<y_{2}<1$ such that we have $\left.D f\left(y_{1}\right)=D f(b)=D f\left(y_{2}\right)\right)$. We therefore have $D f(b) \leqslant 1, D f(0) \geqslant 1$ and $D f(1) \geqslant 1$. This contradicts

$$
D f(b)>\min (D f(0), D f(1))
$$

References

[1] M.R. Herman. Conjugaison quasi symétrique des difféomorphismes du cercle à des rotations et applications aux disques singuliers de Siegel. Manuscrit ${ }^{4}$
[2] G. Świa̧tek. Rational rotation numbers for maps of the circle. Preprint, Univ. Varsovie ${ }^{5}$
[3] J.C. Yoccoz. Il n'y a pas de contre-exemple de Denjoy analytique. CRAS t. 298 (1984), 141-144.

[^2]
[^0]: ${ }^{2}$ where $x \in \mathbb{R}, y=h(x), x_{k}=\widehat{R}_{\alpha}^{k}(x)$ and $y_{k}=\widehat{f}_{\alpha}^{k}(y)=h\left(x_{k}\right)$

[^1]: ${ }^{3}$ In the original, there is a distinction between Z_{\ldots} and z_{\ldots}

[^2]: ${ }^{4} 1986$?
 ${ }^{5}$ Published: Comm. Math. Phys., 119 (1988) 109-128.

