QUASISYMMETRIC CONJUGACY OF ANALYTIC CIRCLE
HOMEOMORPHISMS TO ROTATIONS

M.R. HERMAN

VERY VERY PRELIMINARY VERSION]

1. We denote by D%“(T*') the monoid
{f eDYT"), f:R— R is R-analytic}
where
DO(T'") = {f € Homeo, (R), f(z+1)= f(z)+1,Vz € R}.
Theorem 1. If f € DY (T'), and p(f) = « is a bounded type number, then

f=hoR,oh™ where he& DF(T)

i.e. h is a quasisymmetric homeomorphism of D°(T') and R, (z) = = + «.

2. If a € R—Q, we denote by (pn/gn)n>0 the convergents of a. We set

f(In = fqn/\_ Pn,
In(z) = [z, f"(2)],
Ja(z) = [z, 2" ()],

We recall that the intervals

(1) fI(I,(z)) mod 1 for 0 < j < qnyi1
have pairwise disjoint interiors, and

(2)  fi(I,(x)) mod 1 for 0 < j < 2qni1

is a cover of T! of multiplicity at most 2.
(0) Also, if p/q € Q with (p,q) = 1is a convergent of «, then —p/q is a convergent
of —a.
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3.

Proposition 1. We assume that f € D°(T?!) satisfies:

e o(f) =« is a bounded type number;
e There exists C1 > 1 such that for alln >0 and y € [0, 1],

1< _ |70 (y)]
Cr ™ |F2 (Ju(y)

then f = ho Ry o h™' where h € DB(TY) and fir = fi» — p,,.

The proof is the same as that of [I]. It is not hard to prove that implies
f=hoR,oh ! with h € D°(T!). We can also in theorem [I| use the theorem of
J.C. Yoccoz if we prefer.

We have, if n is even (if n is odd we reverse the orientation) the following order
of the pointﬂ

(4) < O

J/C\2¢Zn PQn
I 1 1 1 /ﬁ /1\\ 1 1 1 1

T T T T T T
Y-2q, Y ¥Y2¢. Yiq. Y2an110n Y-2¢u1  Y2(anntl)gn

e

1 | | 1 1 Il | | 1 1
T T T T T

T T T T T
L2n1 T-2anpan  T-dqn T-2¢n T T2¢, Tdg, P2anpgn T-2¢n1 L2(anpt)an
N 7
ﬁiqn ﬁiqﬂ

We argue as in [I] using that and sup a,41 < 400 imply that all the intervals
(Y2kqn s Y2(k+1)q,) in the figure have length ratio bounded from above and from
below. Almost all that follows is essentially done by Swi@tek [2], with the exception
of § 8 and 9 (Swiatek reasons only about the periodic cycles when p(f) = p/q € Q
and does not look at the case p(f) = o € R — Q neither at but it follows very
easily from what he does).

4. We denote by £ = {(a,b,...,d) e R?, a<b<c<d}. Ifl €L, weset

b—a /d—0
b(l)c—a/d—c'

It is the cross ratio of the 4 points

(b7 C’ a? d)

(the cross ratio of (a,b,c,d) is equal to &% /% ).

I ly ls

a b c d

Ifly=b—a,lo=c—0, I3 =d— c we have

I I3
b(l) =
© L+l la+13

where
(5) b)) <1.

2where z € R, y = h(x), 2 = Iéfi(x) and yg = }E(y) = h(zg)
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It <h, la < s,
1 1 1
6) v()=—F7 — > -
(©) o) 1+2 142 4
If 0 < & < b(1), we have b(l) < 11 /I3, b(l) < l3/l2, and thus

M = < &'

8 = = 4

5. Ifl € L and h € DY(T!),

where if [ = (a, b, c,d) then h(l) = (h(a), h(b), h(c), h(d)). We have if h,g € D°(T?):

D (Z,h og) =D (g(l),h) D (l,g)
(9) D@ =[] D (W), h).
j=0

If h € DI(T!) there exists 1 < C(h) < +oo such that for all [ € £ we have
C(h)~ <D(h,1) < C(h)

where »
(€)™ < sup (IDfllco, 1(DF) " leo)

suits by the mean value theorem.

6.
Proposition 2. If f € D% (T!) then
(10) sup D(I, f) < +oo.

lec
Proof: Let
L1 = {(a,b,c,+0), —00 <a<b<c<+oo}
Ly = {(foo,b,c,d), foo<b<c<d<+oo}
We set if | € L4 ,
—a
b(l):c—a'

It is enough to prove

(11) sup D(l, f) < 400
leLy

to get the proposition.

Ifle .y
c—a  f(b)— f(a)
12) D(,f) = .
A O (=
If § > 0 is fixed, by uniform continuity of f~!, we have
(13) sup D(l, f) < +o0
leLy
c—a>0
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(we bound W from above by || Df|co).
Let 0 < ¢ <...< ¢ < 1 be the critical points of f on [0, 1], € > 0 and

Use = {w, o —¢&| <2, j=1,....k}.

(14) We assume ¢ > 0 is small enough for Us. to be a union of k£ disjoint
intervals and we assume that ¢; 11 — ¢; —4e > 2¢, j = 1,...,k with the convention
ék+1 = él + 1

If ¢ — a > ¢ we bound from above using

If ¢ — a < ¢ and the interval (a,c) is not included in Us. we bound from
above by

1
Dfl|lco sup .
IDflle S 5 r)

If ¢ — a < € and the interval (a,c) C Us, up to assuming £ > 0 small enough,
we can pre-compose f by an analytic diffeomorphism h on a neighborhood of ¢;
satisfying h(¢;) = ¢; and boil down to proving for gs where

gs(x) =2" +s

with n € N*, n odd and s € R. It is enough to prove |(11)| for g = z™. We set
b=a+l,c=a+1+11; >0. If a =0 we have

D(l,g9) <1 [ =(0,b,c,+00).
If a # 0. We set
1 2
— =T, — = T2,
a a
21 -x2 >0 and l = (a,b, ¢, +00). We have

D(l,9) = =—————
( g) P(.%‘l—l—l'g—f—l)
where P(z) =1+ -+ + 2" 1. Since n is odd, we have P(z) > 0 (if P(g) = 0 then
2" =1,z#1).
If z1 > 0, since x5 > 0 we have

P(.’L‘l —l—l‘g—l—l)

If 1 < —A with A > 1 since z2 < 0, the map xy — P(x1 + 22 + 1) is non
increasing. We have

<1.

P(xy 4+ 22 + 1) =
With —A < 1 < 0 we have

— 7 < P 1 fP(x) < .
o+ oo+ 1) i DD <o

7. We have the theorem of G. Swiatek

Theorem 2. We fiz an integer p > 2, f € DY (T%), then there exists C(f,p) > 1
such that if (I;)o<i<j—1 satisfies: l; € L, l; = (ai, bi,ci,d;), every x € T* belongs to
at most p intervals (a;,d;) mod 1; then

j—1
=0
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The important point is that C(f,p) does not depend on (I;)ogig;—1 nor j.
Proof: see pages

8.

Corollary. If f € D" (TY), p(f) = a € R — Q then there exists C1(f) = 1 such
that for all x € R, if

F—an Fan 2qn
l _ (f 1 (I)vfafq (I),I (x)) n even
(=) { (J/&q"(»’”),fq"(x),x,ffq"(x)) n odd
then for all 0 < j < pgny1 and p € N* we have
(15)  D(I(z), f7) < CL(f)P.

Proof: If p = 1 this results from @ and the previous theorem. The case p = 1
with [5] implies the corollary. [ ]

9. Proof of theorem [I]

It is enough to prove [(4)| Let z be such that |fo"(z) — 2| = meigfq"(@ —z|. We
have
b(1(2) =D (F7(1=). 1) b(F 77 (1(2)) ).

By [(15)| and [(6)} if 0 < j < pgnt1, p € N*
1 )
(16) 7 <b(l(z)) < Ci(f)” b(f7(U(2))-
For j € N, we set
z_j= f77(z) mod 1.

If k € Z and j is fixed we agree thatﬂ

Fegn
2 jkgn = 1 (2-5),

with the convention zy = z and obvious abuses of notation.
We fix
1

a(ci(f)”

Up to reversing the orientation we may assume that n is even. The points z_; 144,
are ordered in R for i > 0, ¢ € N, as follows:

p=7and § =

Z—j—iqn < Z*j*(ifl)qn <... < Z—j < Z—j+qn < Z—j42q, -

For 0 < j < 7¢y4+1 we have using and

(17) _Z*j‘f’Qn + Z*j‘leIn > (50
= I
Z_j"l‘q” - Z_j
At At

(18) < &

B—j = R—j—qn

3n the original, there is a distinction between 7. and z...
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We consider the points z_jyiq,, ¢ = —4,...,1 and y € (2_j_2q,,, 2—j—q,. )-

Y—2q, Y—qn Yqn Y2q,

N

| | | | Il | | | Il |
T T T T T T T T T T

T ! T T ! T

z_j_4Qn Z_j_?’Qn Z_j_2Qn Z_j_q'n Z_j Z_j"l‘(Zn

If0 < j < 2gn41 and Yrg, = f%(y) then the points are ordered as in the figure

above. Let ay = 2_j_3q, — 2_j_4q,, - -+, G5 = Z_j4+q, — 2—j. By [(17) and we
have
Aj+1 — )
bo < <oyt i=1,...,4
a;
Whence
Zj T Ajean o TY T Y2 Fojtagn T Zoj-2an
~ ~
Z_j_Qn - Z_j_4q'n Y- y_QQn Z_j_2Qn - z_j_?’q'n
and thus

(19) Cdo) "L < — L0 o(5)
y— y—2qn

where C'(dp) > 1 is a constant which depends only on dy.
By and @ for all y € T', there exists 0 < j < 2¢, 41 such that
Y € (2—j—2¢ns 2—j—q,) mod 1.

Inequality implies [(4)|and presupposes only that p(f) = a € R—Q. Theorem
follows from proposition [I] when « is a bounded type number.

Remarks

1. Inequality [(4)]is true when f € D%“(T?), p(f) =a € R — Q. implies the
result of J. C. Yoccoz [3] i.e. Denjoy’s theorem.

2. Inequality [(4)] together with the inequality of J. C. Yoccoz when f € D%« (T"),
p(f)=acR-Q
|27 (In(y))]
11 (y)]

where Cs(f) is a positive constant, independant from n. This implies that the map
f: T — T! induced on T! by f is conservative for Haar’s measure m: if B is

C(do) > > Co(f) (D ()

m-measurable then the sets (f_j (B))jeN are not pairwise disjoint when m(B) > 0.

Proof of theorem Pl

We assume € > 0 small enough satisfying and on Uy, —{c1,...,c}, Sy <0
(= ﬁ is strictly convex on Use — {c1,...,¢ck}). Weset J ={0,...,5 —1}. Let
Jl = {iGJ, di—ai 28}
We have
#J1 <

QNS

and by proposition [2]

i€Jr
where K7, Ko, K3 are constants which depend only on f and p. Let

Jo={i€ J—Ji, (a;,d;) mod 1 contains a critical point ¢, of f on [0,1[}.
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We have
#J2 < pk
where
k = #{critical points of f on [0, 1[}.
Proposition [2] implies
1 D, £) < Ka(£,p).

1€Jo
Let
J3s={i€J—J—J2, (ai,d;) is not contained in Us. }.
We have
log g D(l;, f) < ; 2vary, 4, (log Df) < 2p[07\1/]zlrUE log(Df) < log (K3(f,p))-
Let

Jy=J—J1—Ja— Js.
If i € J4, (as,b;) C Use. By the next lemma,
i€Jy
and we can take C(f,p) = K1 K3K3 where C(f,p) is independant of the /; and of
the integer j. |

Lemma. Let f:[a,d] =R C2, Df >0 and satisfying
D3f 3 (D2f\?
=PI

Df 2\ Df
(and thus \/%f is strictly convez). Ifl = a < b < ¢ < d then we have
D(Lf) < 1.

Proof: Composing f on the left and on the right by affine maps we may assume
that

Let .
- Y 1-Z¢1l
) = s 1-5 201
We have ¢(0) = 0, ¢»(1) = 1, ¢ preserves cross ratios and if 0 < < 1,
oa(xr) — 0 if N— —o0,

¢y (x) — 1 if A — —o0.

Considering
Tlof=f
we have
D(1,¢3" o f) = DL, f).

We may assume that f = f) satisfies

fO)=0<f(b)=b<c< f(1)=1,
Sf<0.

Since ﬁ is strictly convex, f has no fixed point apart from 0, b and 1. We want
to show that f(c) > c¢. If we had f(c¢) < ¢ we would have f(x) < z on ]b,1[ and

f(z) >z on 0, (if we had f(z) < x on 0, b[ by Rolle’s theorem, there would exist
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0 <y <b<ys<1such that we have Df(y1) = Df(b) = Df(y2)). We therefore
have Df(b) <1, Df(0) > 1 and Df(1) > 1. This contradicts

Df(b) > min (Df(0), Df(1)).

|
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