Tan Lei and Shishikura's example of obstructed polynomial mating without a levy cycle.

#### Arnaud Chéritat

CNRS, Univ. Toulouse

Feb. 2012

## Origins



## Origins



# Topological (instant) mating

 $K(P_1) \coprod K(P_2) / \sim$ with  $\sim$ : relation generated by identifying endpoints of external rays. A dynamics is well defined thereon.



When is the quotient a sphere?

When is the dynamics conjugated to a rational map?

#### Formal mating

Since PCF (post-critically finite) rational maps are characterized by Thurston's theorem, it is tempting to try and guess the Th-equivalence class of a potential mating of  $P_1$  and  $P_2$ .

#### Formal mating

Since PCF (post-critically finite) rational maps are characterized by Thurston's theorem, it is tempting to try and guess the Th-equivalence class of a potential mating of  $P_1$  and  $P_2$ .



### Formal mating

Since PCF (post-critically finite) rational maps are characterized by Thurston's theorem, it is tempting to try and guess the Th-equivalence class of a potential mating of  $P_1$  and  $P_2$ .



In good cases, it is unobstructed and Th-equivalent to a rational map and to the topological mating.

A. Chéritat (CNRS, UPS)

### Degenerate (assisted) mating

However sometimes the formal mating has a Th-obstruction yet the topological mating is conjugated to a rational map. Rees, Shishikura and Tan Lei have devised a way to detect this on the formal mating and to correct the latter by collapsing some post critical points together, yielding a new ramified cover that is unobstructed. and proved that it is Th-equivalent to a rational map conjugated to the topological mating.



### Obstructed matings

The last case is when the obstruction cannot be removed. Then, the topological mating cannot be equivalent to a rational map (even though the quotient still may be a sphere, or not).



Define a Riemann surface  $S_R$  by cutting & pasting along equipotential  $e^R$ , R > 1. Glue according to external angle.



Uniformize to  $\widehat{\mathbb{C}}$ . Here: stereographic<sup>y</sup> projected to  $S^2$ .

A. Chéritat (CNRS, UPS)

There is a natural holomorphic map (rational of degree d after uniformization)

$$F_R: \mathcal{S}_R \to \mathcal{S}_{R^d}.$$



Question: Do the maps  $F_R$  converge as  $R \rightarrow 1$  to a rational map of the same degree?

It is then tempting to define the latter as a mating of  $P_1$  and  $P_2$ .

In the PCF case, the post-critical set of  $P_1$  and  $P_2$  map to Riemann surfaces  $S_R$ , so we get Riemann surfaces with marked points. The sequence of marked  $S_{R^{1/d^n}}$  for  $n \in \mathbb{N}$  is an orbit under "Thurston's pull-back map associated to the formal mating".

#### Comparison



It is a mating of two PCF polynomials of degree 3 whose formal mating has a non removable Th-obstruction.



A. Chéritat (CNRS, UPS)



A. Chéritat (CNRS, UPS)

Obstructed mating

Matrix of the multicurve {orange,green}:

$$\left[\begin{array}{rrr} 1/2 & 1/2 \\ 1 & 0 \end{array}\right]$$

Spectrum:  $\{1, 1/2\}$ .

Remark: Shishikura and Tan Lei have proved that the ray equivalence relation is closed and that classes are trees with a bounded number of equator crossing: thus the topological mating gives a sphere. Aslo, the topol mating is Th-equivalent to the formal mating (and thus not to a rational map).

## Pinching curves





Show movie.

## Flat view



### Three normalizations



A. Chéritat (CNRS, UPS)

Obstructed mating

Feb. 2012 13 / 15

### Three normalizations



### $Three \ normalizations$



### Three normalizations



There is a limit dynamical system on a tree of spheres: the tree of three spheres obtained when the canonical obstruction gets completely pinched.



The third iterate of the limit maps each sphere to itself, by three semi-conjugated degree 6 rational maps.





A. Chéritat (CNRS, UPS)

Obstructed mating









