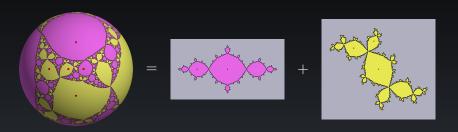
Tan Lei and Shishikura's example of obstructed polynomial mating without a levy cycle.

Arnaud Chéritat

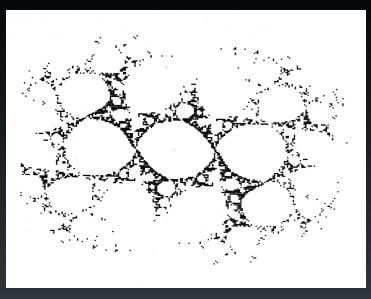
CNRS, Univ. Toulouse

Feb. 2012

Origins

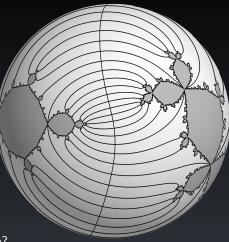


Origins



Topological (instant) mating

 $K(P_1) \coprod K(P_2) / \sim$ with \sim : relation generated by identifying endpoints of external rays. A dynamics is well defined thereon.



When is the quotient a sphere?

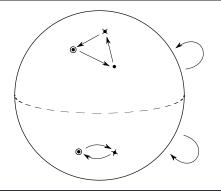
When is the dynamics conjugated to a rational map?

Formal mating

Since PCF (post-critically finite) rational maps are characterized by Thurston's theorem, it is tempting to try and guess the Th-equivalence class of a potential mating of P_1 and P_2 .

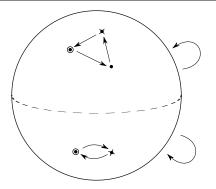
Formal mating

Since PCF (post-critically finite) rational maps are characterized by Thurston's theorem, it is tempting to try and guess the Th-equivalence class of a potential mating of P_1 and P_2 .



Formal mating

Since PCF (post-critically finite) rational maps are characterized by Thurston's theorem, it is tempting to try and guess the Th-equivalence class of a potential mating of P_1 and P_2 .

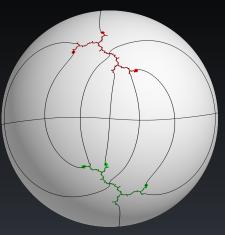


In good cases, it is unobstructed and Th-equivalent to a rational map and to the topological mating.

A. Chéritat (CNRS, UPS)

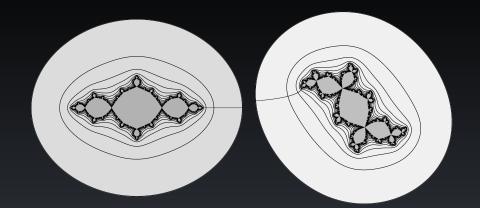
Degenerate (assisted) mating

However sometimes the formal mating has a Th-obstruction yet the topological mating is conjugated to a rational map. Rees, Shishikura and Tan Lei have devised a way to detect this on the formal mating and to correct the latter by collapsing some post critical points together, yielding a new ramified cover that is unobstructed. and proved that it is Th-equivalent to a rational map conjugated to the topological mating.

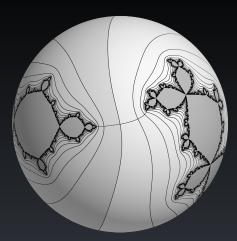


Obstructed matings

The last case is when the obstruction cannot be removed. Then, the topological mating cannot be equivalent to a rational map (even though the quotient still may be a sphere, or not).



Define a Riemann surface S_R by cutting & pasting along equipotential e^R , R > 1. Glue according to external angle.

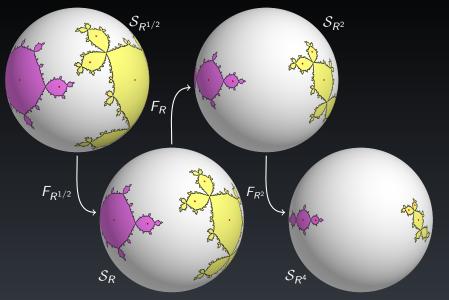


Uniformize to $\widehat{\mathbb{C}}$. Here: stereographic^y projected to S^2 .

A. Chéritat (CNRS, UPS)

There is a natural holomorphic map (rational of degree d after uniformization)

$$F_R: \mathcal{S}_R \to \mathcal{S}_{R^d}.$$

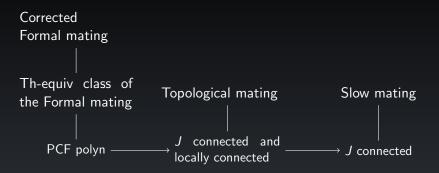


Question: Do the maps F_R converge as $R \rightarrow 1$ to a rational map of the same degree?

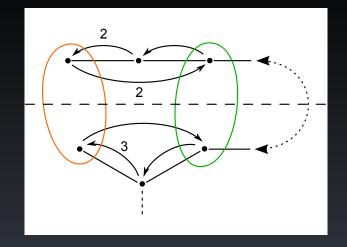
It is then tempting to define the latter as a mating of P_1 and P_2 .

In the PCF case, the post-critical set of P_1 and P_2 map to Riemann surfaces S_R , so we get Riemann surfaces with marked points. The sequence of marked $S_{R^{1/d^n}}$ for $n \in \mathbb{N}$ is an orbit under "Thurston's pull-back map associated to the formal mating".

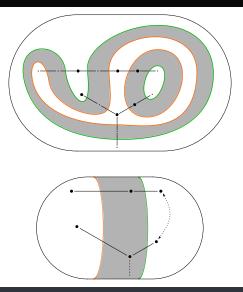
Comparison



It is a mating of two PCF polynomials of degree 3 whose formal mating has a non removable Th-obstruction.



A. Chéritat (CNRS, UPS)



A. Chéritat (CNRS, UPS)

Obstructed mating

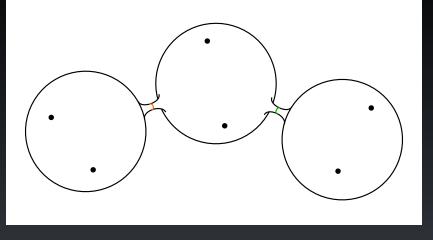
Matrix of the multicurve {orange,green}:

$$\left[\begin{array}{rrr} 1/2 & 1/2 \\ 1 & 0 \end{array}\right]$$

Spectrum: $\{1, 1/2\}$.

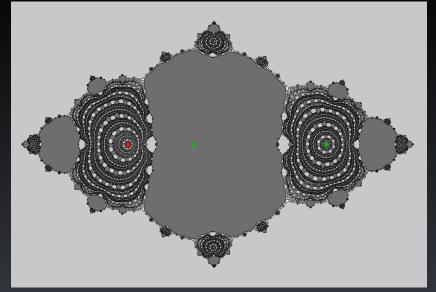
Remark: Shishikura and Tan Lei have proved that the ray equivalence relation is closed and that classes are trees with a bounded number of equator crossing: thus the topological mating gives a sphere. Aslo, the topol mating is Th-equivalent to the formal mating (and thus not to a rational map).

Pinching curves

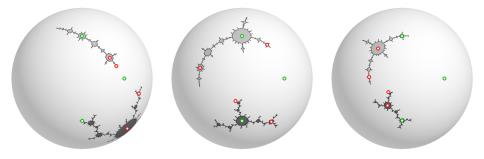


Show movie.

Flat view



Three normalizations

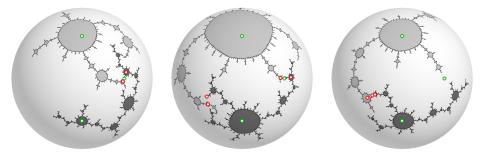


A. Chéritat (CNRS, UPS)

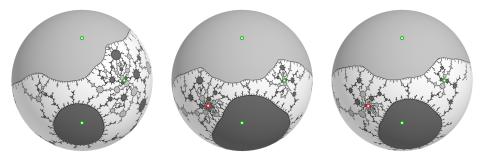
Obstructed mating

Feb. 2012 13 / 15

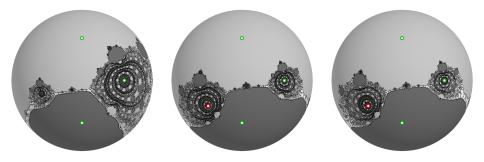
Three normalizations



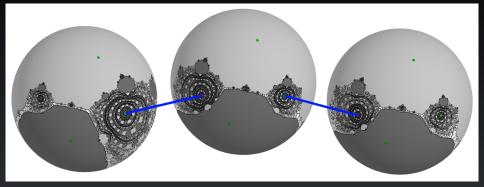
$Three \ normalizations$



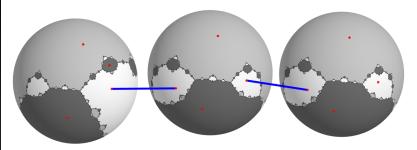
Three normalizations

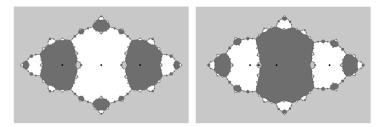


There is a limit dynamical system on a tree of spheres: the tree of three spheres obtained when the canonical obstruction gets completely pinched.



The third iterate of the limit maps each sphere to itself, by three semi-conjugated degree 6 rational maps.





A. Chéritat (CNRS, UPS)

Obstructed mating

