Tan Lei and Shishikura's example of obstructed polynomial mating without a levy cycle.

Arnaud Chéritat

CNRS, Univ. Toulouse

Feb. 2012

Origins

Topological (instant) mating

$K\left(P_{1}\right) \amalg K\left(P_{2}\right) / \sim$ with \sim : relation generated by identifying endpoints of external rays. A dynamics is well defined thereon.

When is the quotient a sphere?

When is the dynamics conjugated to a rational map?

Formal mating

Since PCF (post-critically finite) rational maps are characterized by Thurston's theorem, it is tempting to try and guess the Th-equivalence class of a potential mating of P_{1} and P_{2}.

Formal mating

Since PCF (post-critically finite) rational maps are characterized by Thurston's theorem, it is tempting to try and guess the Th-equivalence class of a potential mating of P_{1} and P_{2}.

Formal mating

Since PCF (post-critically finite) rational maps are characterized by Thurston's theorem, it is tempting to try and guess the Th-equivalence class of a potential mating of P_{1} and P_{2}.

In good cases, it is unobstructed and Th-equivalent to a rational map and to the topological mating.

Degenerate (assisted) mating

However sometimes the formal mating has a Th-obstruction yet the topological mating is conjugated to a rational map. Rees, Shishikura and Tan Lei have devised a way to detect this on the formal mating and to correct the latter by collapsing some post critical points together, yielding a new ramified cover that is unobstructed, and proved that it is Th-equivalent to a rational map conjugated to the topological mating.

Obstructed matings

The last case is when the obstruction cannot be removed. Then, the topological mating cannot be equivalent to a rational map (even though the quotient still may be a sphere, or not).

Slow mating

Define a Riemann surface \mathcal{S}_{R} by cutting \& pasting along equipotential e^{R}, $R>1$. Glue according to external angle.

Slow mating

Uniformize to $\widehat{\mathbb{C}}$. Here: stereographic ${ }^{y}$ projected to S^{2}.

Slow mating

There is a natural holomorphic map (rational of degree d after uniformization)

$$
F_{R}: \mathcal{S}_{R} \rightarrow \mathcal{S}_{R^{d}}
$$

Slow mating

Slow mating

Question: Do the maps F_{R} converge as $R \longrightarrow 1$ to a rational map of the same degree?
It is then tempting to define the latter as a mating of P_{1} and P_{2}.

Slow mating

In the PCF case, the post-critical set of P_{1} and P_{2} map to Riemann surfaces \mathcal{S}_{R}, so we get Riemann surfaces with marked points. The sequence of marked $\mathcal{S}_{R^{1 / d n}}$ for $n \in \mathbb{N}$ is an orbit under "Thurston's pull-back map associated to the formal mating".

Comparison

Corrected

 Formal mating

Th-equiv class of the Formal mating
|
PCF polyn $\longrightarrow \begin{aligned} & J \text { connected and } \\ & \text { locally connected }\end{aligned}$

Topological mating I

Slow mating
$\longrightarrow J$ connected

The example

It is a mating of two PCF polynomials of degree 3 whose formal mating has a non removable Th-obstruction.

The example

The example

The example

Matrix of the multicurve \{orange,green\}:

$$
\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 & 0
\end{array}\right]
$$

Spectrum: $\{1,1 / 2\}$.

The example

Remark: Shishikura and Tan Lei have proved that the ray equivalence relation is closed and that classes are trees with a bounded number of equator crossing: thus the topological mating gives a sphere. Aslo, the topol mating is Th-equivalent to the formal mating (and thus not to a rational map).

Pinching curves

Showtime

Show movie.

Flat view

Three normalizations

0

Three normalizations

Three normalizations

Three normalizations

Interpretation: limit dynamical system.

There is a limit dynamical system on a tree of spheres: the tree of three spheres obtained when the canonical obstruction gets completely pinched.

Interpretation: limit dynamical system.

Interpretation: limit dynamical system.

The third iterate of the limit maps each sphere to itself, by three semi-conjugated degree 6 rational maps.

Interpretation: limit dynamical system.

Interpretation: tubes and mess.

Interpretation: tubes and mess.

Interpretation: tubes and mess.

Interpretation: tubes and mess.

Interpretation: tubes and mess.

