About the Marmi Moussa Yoccoz conjecture

Xavier Buff and Arnaud Chéritat

Univ. Toulouse

Pisa, April 2007

This conjecture concerns a function that we'll call Υ (Upsilon) and whose definition we begin with.

$$P_{\alpha}(z) = e^{2i\pi\alpha}z + z^2$$

 $r(\alpha)$ is the *conformal radius* of the Siegel disk of P_{α} .

$$\Phi(\alpha) = \sum_{n=0}^{+\infty} \alpha_0 \cdots \alpha_{n-1} \log \frac{1}{\alpha_n}$$

where $\alpha_{n+1} = \operatorname{Frac}(\alpha_n)$ and $\alpha_0 = \operatorname{Frac}(\alpha)$, is Yoccoz's variant of the *Brjuno sum*. It is an approximation of $-\log r(\alpha)$, and Υ is the *error term*:

$$\Upsilon(\alpha) = \Phi(\alpha) + \log r(\alpha)$$

This conjecture concerns a function that we'll call Υ (Upsilon) and whose definition we begin with.

$$P_{\alpha}(z) = e^{2i\pi\alpha}z + z^2$$

 $r(\alpha)$ is the *conformal radius* of the Siegel disk of P_{α} . \bigcirc graph

$$\Phi(\alpha) = \sum_{n=0}^{+\infty} \alpha_0 \cdots \alpha_{n-1} \log \frac{1}{\alpha_n}$$

where $\alpha_{n+1} = \operatorname{Frac}(\alpha_n)$ and $\alpha_0 = \operatorname{Frac}(\alpha)$, is Yoccoz's variant of the *Brjuno sum*. It is an approximation of $-\log r(\alpha)$, and Υ is the *error term*:

$$\Upsilon(\alpha) = \Phi(\alpha) + \log r(\alpha)$$

- Yoccoz almost proved that Υ is bounded (around 1988).
- Marmi drew the graph.
- (let me show a version I drew in 2002)

- Yoccoz almost proved that Υ is bounded (around 1988).
- Marmi drew the graph.
- (let me show a version I drew in 2002)

- Yoccoz almost proved that Υ is bounded (around 1988).
- Marmi drew the graph.
- (let me show a version I drew in 2002)

- Yoccoz almost proved that Υ is bounded (around 1988).
- Marmi drew the graph.
- (let me show a version I drew in 2002)

The Marmi Moussa Yoccoz conjecture Introduction

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R} .
- (Marmi, Moussa, Yoccoz) ↑ is 1/2-Hölder.
- (some pred) $\Upsilon(\alpha)$ reaches its minimum at $\alpha = (\sqrt{2} 1)/2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C) ↑ is Lipschitz at getch rationnal
- (C) Each rationnal is a local maximum (upward wedges).
- (C) The graph has an horizontal tangent at $\alpha = (\sqrt{5} 1)/2$.

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R} .
- (Marmi, Moussa, Yoccoz) Υ is 1/2-Hölder.
- (some pre) $\Upsilon(\alpha)$ reaches its minimum at $\alpha = (\sqrt{2} 1)/2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C) Υ is Lipschitz at getch rationnal
- (C) Each rationnal is a local maximum (upward wedges).
- (C) The graph has an horizontal tangent at $\alpha = (\sqrt{5} 1)/2$.

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R} . \checkmark BC 2003
- (Marmi, Moussa, Yoccoz) ↑ is 1/2-Hölder.
- (some pred) $\Upsilon(\alpha)$ reaches its minimum at $\alpha = (\sqrt{2} 1)/2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C) T is Lipschitz at pech rationnal
- (C) Each rationnal is a local Makimum (upward wedges).
- (C) The graph has an horizontal tangent at $\alpha = (\sqrt{5} 1)/2$.

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R} . \checkmark BC 2003
- (Marmi, Moussa, Yoccoz) Ƴ is 1/2-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha = (\sqrt{5} 1)/2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C) T is Lipschitz at getch rationnal
- (C) Each rationnal is a local maximum (upward wedges).
- (C) The graph has an horizontal tangent at $\alpha = (\sqrt{5} 1)/2$.

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R} . \checkmark BC 2003
- (Marmi, Moussa, Yoccoz) Ƴ is 1/2-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha = (\sqrt{5} 1)/2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C) Υ is Lipschitz at each rationnal
- (C) Each rationnal is a local maximum (upward wedges).
- (C) The graph has an horizontal tangent at $\alpha = (\sqrt{5} 1)/2$.

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R} . \checkmark BC 2003
- (Marmi, Moussa, Yoccoz) Ƴ is 1/2-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha = (\sqrt{5} 1)/2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C) Υ is Lipschitz at each rationnal
- (C) Each rationnal is a local Maximum (upward wedges).
- (C) The graph has an horizontal tangent at $\alpha = (\sqrt{5} 1)/2$.

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R} . \checkmark BC 2003
- (Marmi, Moussa, Yoccoz) Υ is 1/2-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha = (\sqrt{5} 1)/2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C) Each rationnal is a local maximum (upward wedges).
- (C) The graph has an horizontal tangent at $\alpha = (\sqrt{5} 1)/2$.

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R} . \checkmark BC 2003
- (Marmi, Moussa, Yoccoz) Υ is 1/2-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha = (\sqrt{5} 1)/2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C) T is Lipschitz at each rationnal
- (C) Each rationnal is a local maximum/(upward wedges).
- (C) The graph has an horizontal tangent at $\alpha = (\sqrt{5} 1)/2$.

The Marmi Moussa Yoccoz conjecture Introduction

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R} . \checkmark BC 2003
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha = (\sqrt{5}-1)/2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C) T is Lipschitz at each rationnal
- (C) Each rationnal is a local maximum (upward wedges).
- (C) The graph has an horizontal tangent at $\alpha = (\sqrt{5} 1)/2$.

better graph) > zoom a<u>t gmean</u>

The Marmi Moussa Yoccoz conjecture Main theorem of this talk

Theorem (BC)

On every interval I, the function Υ is not δ -Hölder on I for any $\delta > 1/2$, and has unbounded variation on I.

In other words, if the MMY conjecture holds, then 1/2 is the optimal exponent.

The arithmetical function Φ satisfies the following functional equation

$$\forall \alpha \in]0,1], \quad \Phi(\alpha) - \alpha \Phi(1/\alpha) = \log \frac{1}{\alpha}.$$

Let

$$H(\alpha) = \Upsilon(\alpha) - \alpha \Upsilon(1/\alpha).$$

The expansion The value

Theorem (BC 2002)

$$\Upsilon\!\left(rac{p}{q}
ight) = rac{\log 2\pi}{q} + L_{a}\!\left(rac{p}{q}
ight) + \Phi_{ ext{trunc}}\!\left(rac{p}{q}
ight)$$

where

 L_a = asymptotic size of the parabolic fixed point of $P_{p/q}^q$, Φ_{trunc} = truncated Yoccoz's Brjuno sum.

(Define these numbers on the blackboard.)

The expansion The value

Theorem (BC 2002)

$$\Upsilon\!\left(rac{p}{q}
ight) = rac{\log 2\pi}{q} + L_a\!\left(rac{p}{q}
ight) + \Phi_{ ext{trunc}}\!\left(rac{p}{q}
ight)$$

where

 L_a = asymptotic size of the parabolic fixed point of $P_{p/q}^q$, Φ_{trunc} = truncated Yoccoz's Brjuno sum.

(Define these numbers on the blackboard.)

Example:

$$\Upsilon(0) = \log 2\pi.$$

The expansion on whom?

Consider one of the two continued fractions of

$$p/q = [a_0, \ldots, a_k] = a_0 + 1/(a_1 + \ldots).$$

Let $s \in \mathbb{R}$ and

$$x_n = [a_0, \ldots, a_k, n+s] = a_0 + 1/(\ldots + 1/(n+s)).$$

According to which continued fraction of p/q we chose, $x_n \longrightarrow p/q$ either from the right or the left.

The expansion itself

$$x_n = [a_0, \ldots, a_k, n+s] = a_0 + \frac{1}{\frac{1}{\cdots + \frac{1}{n+s}}}$$

Theorem (BC 2006)

There exists constants A, $B_s \in \mathbb{R}$ such that if $s \in \mathbb{Q}$ then

$$\Upsilon(x_n) \underset{n \to \infty}{=} \Upsilon\left(\frac{p}{q}\right) + A \frac{\log n}{n} + B_s \frac{1}{n} + o\left(\frac{1}{n}\right)$$

3

The expansion itself

$$x_n = [a_0, \ldots, a_k, n+s] = a_0 + \frac{1}{\frac{1}{\cdots + \frac{1}{n+s}}}$$

Theorem (BC 2006)

There exists constants A, $B_s \in \mathbb{R}$ such that if $s \in \mathbb{Q}$ then

$$\Upsilon(x_n) \underset{n\to\infty}{=} \Upsilon\left(\frac{p}{q}\right) + A\frac{\log n}{n} + B_s \frac{1}{n} + o\left(\frac{1}{n}\right)$$

Example:

$$\Upsilon\left(\frac{1}{n}\right) = \log 2\pi + 0 - \frac{7.052\ldots}{n} + o\left(\frac{1}{n}\right).$$

3

-

The expansion definitions

- Let I be the holomorphic index of $P_{p/q}^q$ at 0 and $\gamma = \frac{\frac{q+1}{2}-I}{q}$ be Écalle's *iterative residue* divided by q.
- Let \mathcal{E}_{θ} be the *parabolic renormalisation* (aka *horn map*). This is a family of maps such that $\mathcal{E}_{\theta} = e^{2i\pi\theta}\mathcal{E}_0$, $\mathcal{E}_0(0) = 0$ and $\mathcal{E}'_0(0) = 1$.
- For s ∈ Q, let Υ_ε(s) be defined by analogy by Υ_ε(s) = log(2π)/q + log L_a(ε, s) + Φ_{trunc}(s).

The familiy \mathcal{E} depends up to conjugacy by a linear map, on choices made in defining the Fatou coordinates of $P_{p/q}^q$. Thus the value of $L_a(\mathcal{E}, s)$ and $\Upsilon_{\mathcal{E}}(s)$ depend on these choices.

The expansion definitions

- Let I be the holomorphic index of $P_{p/q}^q$ at 0 and $\gamma = \frac{\frac{q+1}{2}-I}{q}$ be Écalle's *iterative residue* divided by q.
- Let \mathcal{E}_{θ} be the parabolic renormalisation (aka horn map). This is a family of maps such that $\mathcal{E}_{\theta} = e^{2i\pi\theta}\mathcal{E}_0$, $\mathcal{E}_0(0) = 0$ and $\mathcal{E}'_0(0) = 1$.
- For $s \in \mathbb{Q}$, let $\Upsilon_{\mathcal{E}}(s)$ be defined by analogy by $\Upsilon_{\mathcal{E}}(s) = \log(2\pi)/q + \log L_a(\mathcal{E}, s) + \Phi_{\text{trunc}}(s)$.

The familiy \mathcal{E} depends up to conjugacy by a linear map, on choices made in defining the Fatou coordinates of $P_{p/q}^q$. Thus the value of $L_a(\mathcal{E}, s)$ and $\Upsilon_{\mathcal{E}}(s)$ depend on these choices.

The expansion

The constant of the logarithmic term

Reminder

$$\Upsilon(x_n) \underset{n \to \infty}{=} \Upsilon\left(\frac{p}{q}\right) + \frac{\log n}{n} + B_s \frac{1}{n} + o\left(\frac{1}{n}\right)$$

$$\mathbf{A} = -\frac{q_{k-1}}{q^2} - \nu \frac{2\pi \operatorname{Im} \gamma\left(\frac{p}{q}\right)}{q}.$$

where

- $\nu = (-1)^k$ is the side from which $x_n \longrightarrow p/q$,
- q_{k-1} is the denominator of the last convergent p_{k-1}/q_{k-1} of p/q before p/q itself.

The numbers ν , q_{k-1} and ν all depend on which continued fraction of p/q we chose.

The expansion definitions

- Let I be the holomorphic index of $P_{p/q}^q$ at 0 and $\gamma = \frac{\frac{q+1}{2}-I}{q}$ be Écalle's *iterative residue* divided by q.
- Let \mathcal{E}_{θ} be the parabolic renormalisation (aka horn map). This is a family of maps such that $\mathcal{E}_{\theta} = e^{2i\pi\theta}\mathcal{E}_0$, $\mathcal{E}_0(0) = 0$ and $\mathcal{E}'_0(0) = 1$.
- For $s \in \mathbb{Q}$, let $\Upsilon_{\mathcal{E}}(s)$ be defined by analogy by $\Upsilon_{\mathcal{E}}(s) = \log(2\pi)/q + \log L_a(\mathcal{E}, s) + \Phi_{\text{trunc}}(s)$.

The familiy \mathcal{E} depends up to conjugacy by a linear map, on choices made in defining the Fatou coordinates of $P_{p/q}^q$. Thus the value of $L_a(\mathcal{E}, s)$ and $\Upsilon_{\mathcal{E}}(s)$ depend on these choices.

The expansion definitions

- Let I be the holomorphic index of $P_{p/q}^q$ at 0 and $\gamma = \frac{\frac{q+1}{2}-I}{q}$ be Écalle's *iterative residue* divided by q.
- Let \mathcal{E}_{θ} be the parabolic renormalisation (aka horn map). This is a family of maps such that $\mathcal{E}_{\theta} = e^{2i\pi\theta}\mathcal{E}_0$, $\mathcal{E}_0(0) = 0$ and $\mathcal{E}'_0(0) = 1$.

• For
$$s \in \mathbb{Q}$$
, let $\Upsilon_{\mathcal{E}}(s)$ be defined by analogy by $\Upsilon_{\mathcal{E}}(s) = \log(2\pi)/q + \log L_a(\mathcal{E}, s) + \Phi_{trunc}(s)$.

The familiy \mathcal{E} depends up to conjugacy by a linear map, on choices made in defining the Fatou coordinates of $P_{p/q}^q$. Thus the value of $L_a(\mathcal{E}, s)$ and $\Upsilon_{\mathcal{E}}(s)$ depend on these choices.

The expansion The constant of the linear term

Reminder

$$\Upsilon(x_n) = \Upsilon\left(\frac{p}{q}\right) + A\frac{\log n}{n} + B_s \frac{1}{n} + o\left(\frac{1}{n}\right)$$

$$B_{s} = \frac{\Upsilon_{\mathcal{E}}(-\nu s)}{q} \pm \frac{\pi^{2}}{q} \operatorname{Re} \gamma \left(\frac{p}{q}\right) + \nu c$$

Where c is a constant that depends on the choices in Fatou coordinates.

Hence, for our main theorem to hold near p/q, it is enough that $\Upsilon_{\mathcal{E}}$ be a non constant function.

We can prove it. • Details

The expansion

The constant of the linear term

Reminder

$$\Upsilon(x_n) = \Upsilon\left(\frac{p}{q}\right) + A\frac{\log n}{n} + B_s \frac{1}{n} + o\left(\frac{1}{n}\right)$$

$$B_{s} = rac{\Upsilon_{\mathcal{E}}(-
u s)}{q} \pm rac{\pi^{2}}{q} \operatorname{Re} \gamma\Big(rac{p}{q}\Big) +
u c$$

Where c is a constant that depends on the choices in Fatou coordinates.

Hence, for our main theorem to hold near p/q, it is enough that $\Upsilon_{\mathcal{E}}$ be a non constant function.

We can prove it.
Details

The expansion

Reminder

$$\Upsilon(x_n) = \Upsilon\left(\frac{p}{q}\right) + A\frac{\log n}{n} + B_s \frac{1}{n} + o\left(\frac{1}{n}\right)$$

$$B_{s} = rac{\Upsilon_{\mathcal{E}}(-
u s)}{q} \pm rac{\pi^{2}}{q} \operatorname{Re} \gamma\Big(rac{p}{q}\Big) +
u c$$

Where c is a constant that depends on the choices in Fatou coordinates.

Hence, for our main theorem to hold near p/q, it is enough that $\Upsilon_{\mathcal{E}}$ be a *non constant function*.

We can prove it. 🕩 Details
The expansion The constant of the linear term

Reminder

$$\Upsilon(x_n) = \Upsilon\left(\frac{p}{q}\right) + A\frac{\log n}{n} + B_s \frac{1}{n} + o\left(\frac{1}{n}\right)$$

$$B_{s} = rac{\Upsilon_{\mathcal{E}}(-
u s)}{q} \pm rac{\pi^{2}}{q} \operatorname{Re} \gamma\Big(rac{p}{q}\Big) +
u c$$

Where *c* is a constant that depends on the choices in Fatou coordinates.

Hence, for our main theorem to hold near p/q, it is enough that $\Upsilon_{\mathcal{E}}$ be a non constant function.

We can prove it.
Details

X. Buff & A. Chéritat (Univ. Toulouse)

The expansion a conjecture

Our expansion implies that the function

$$\frac{\Upsilon\left(\frac{p}{q}+\nu\varepsilon\right)-\Upsilon(p/q)}{\varepsilon}+\nu q^2A\log\varepsilon.$$

where we substitute $\varepsilon = \frac{1}{n+x}$ converges simply for $x \in \mathbb{Q}$ to the function

$$\nu q^2(B_x - A \log q^2) = \nu q \Upsilon_{\mathcal{E}}(-\nu x) + \operatorname{cst}.$$

Conjecture

The convergence is uniform.

▶ Illustration

The expansion a conjecture

Our expansion implies that the function

$$\frac{\Upsilon\left(\frac{p}{q}+\nu\varepsilon\right)-\Upsilon(p/q)}{\varepsilon}+\nu q^2A\log\varepsilon.$$

where we substitute $\varepsilon = \frac{1}{n+x}$ converges simply for $x \in \mathbb{Q}$ to the function

$$u q^2(B_x - A \log q^2) = \nu q \Upsilon_{\mathcal{E}}(-\nu x) + \operatorname{cst}.$$

Conjecture

The convergence is uniform.

▶ Illustration

∃ → (∃ →

The expansion a conjecture

Our expansion implies that the function

$$\frac{\Upsilon\Big(\frac{p}{q}+\nu\varepsilon\Big)-\Upsilon(p/q)}{\varepsilon}+\nu q^2A\log\varepsilon.$$

where we substitute $\varepsilon = \frac{1}{n+x}$ converges simply for $x \in \mathbb{Q}$ to the function

$$u q^2(B_x - A \log q^2) = \nu q \Upsilon_{\mathcal{E}}(-\nu x) + \operatorname{cst}.$$

Conjecture

The convergence is uniform.

▶ Illustration

The expansion about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1/2$:

- If Υ and Υ_{ε0} do not differ on Q by a constant, then for all ε > 0, H is not δ-Hölder on [0, ε] and has unbounded variation there.
- Let $p/q \notin \mathbb{Z}$ and $\nu = \pm 1$. If $\Upsilon_{\mathcal{E}_{p/q},\nu}$ and $\Upsilon_{\mathcal{E}_{q/p},\nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[p/q, p/q + \nu\varepsilon]$ and has unbounded variation there.

These differences do not depend on Yoccoz's Brjuno function Φ , which cancels out, leaving only the conformal radii/asymptotic sizes.

Therefore H cannot be better than 1/2-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p/q.

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1/2$:

- If Υ and Υ_{ε0} do not differ on Q by a constant, then for all ε > 0, H is not δ-Hölder on [0, ε] and has unbounded variation there.
- Let $p/q \notin \mathbb{Z}$ and $\nu = \pm 1$. If $\Upsilon_{\mathcal{E}_{p/q},\nu}$ and $\Upsilon_{\mathcal{E}_{q/p},\nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[p/q, p/q + \nu\varepsilon]$ and has unbounded variation there.

These differences do not depend on Yoccoz's Brjuno function Φ , which cancels out, leaving only the conformal radii/asymptotic sizes.

Therefore H cannot be better than 1/2-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p/q.

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1/2$:

- If Υ and $\Upsilon_{\mathcal{E}_0}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[0, \varepsilon]$ and has unbounded variation there.
- Let $p/q \notin \mathbb{Z}$ and $\nu = \pm 1$. If $\Upsilon_{\mathcal{E}_{p/q},\nu}$ and $\Upsilon_{\mathcal{E}_{q/p},\nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[p/q, p/q + \nu\varepsilon]$ and has unbounded variation there.

These differences do not depend on Yoccoz's Brjuno function Φ , which cancels out, leaving only the conformal radii/asymptotic sizes.

Therefore H cannot be better than 1/2-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p/q.

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1/2$:

- If Υ and $\Upsilon_{\mathcal{E}_0}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[0, \varepsilon]$ and has unbounded variation there.
- Let $p/q \notin \mathbb{Z}$ and $\nu = \pm 1$. If $\Upsilon_{\mathcal{E}_{p/q},\nu}$ and $\Upsilon_{\mathcal{E}_{q/p},\nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[p/q, p/q + \nu\varepsilon]$ and has unbounded variation there.

These differences do not depend on Yoccoz's Brjuno function Φ, which cancels out, leaving only the conformal radii/asymptotic sizes.

Therefore *H* cannot be better than 1/2-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p/q.

・ 同 ト ・ ヨ ト ・ ヨ ト

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1/2$:

- If Υ and $\Upsilon_{\mathcal{E}_0}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[0, \varepsilon]$ and has unbounded variation there.
- Let $p/q \notin \mathbb{Z}$ and $\nu = \pm 1$. If $\Upsilon_{\mathcal{E}_{p/q},\nu}$ and $\Upsilon_{\mathcal{E}_{q/p},\nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[p/q, p/q + \nu\varepsilon]$ and has unbounded variation there.

These differences do not depend on Yoccoz's Brjuno function Φ , which cancels out, leaving only the conformal radii/asymptotic sizes.

Therefore H cannot be better than 1/2-Hölder on any $[0,\varepsilon]$ and it is very likely that it holds near every p/q.

くほと くほと くほと

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1/2$:

- If Υ and $\Upsilon_{\mathcal{E}_0}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[0, \varepsilon]$ and has unbounded variation there.
- Let $p/q \notin \mathbb{Z}$ and $\nu = \pm 1$. If $\Upsilon_{\mathcal{E}_{p/q},\nu}$ and $\Upsilon_{\mathcal{E}_{q/p},\nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon > 0$, H is not δ -Hölder on $[p/q, p/q + \nu\varepsilon]$ and has unbounded variation there.

These differences do not depend on Yoccoz's Brjuno function Φ , which cancels out, leaving only the conformal radii/asymptotic sizes.

Therefore H cannot be better than 1/2-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p/q.

・ 同 ト ・ ヨ ト ・ ヨ ト

• We will describe, if time allows, a *normalization of Fatou coordinates*, which fixes choices.

Start from θ = p/q and perturb it into θ = p/q + ε. Then the parabolic point of P_{p/q} explodes into a cycle (z₁,..., z_q of P_θ). Let

$$\sigma(\varepsilon)=\prod z_i.$$

Then σ is an analytic function of ε and

$$\sigma = \mathbf{a}\varepsilon + \mathbf{b}\varepsilon^2 + \mathcal{O}(\varepsilon^3).$$

We define:

$$\Gamma = \frac{-1}{4i\pi q^2} \cdot \frac{b}{a}$$

- We will describe, if time allows, a *normalization of Fatou coordinates*, which fixes choices.
- Start from $\theta = p/q$ and perturb it into $\theta = p/q + \varepsilon$. Then the parabolic point of $P_{p/q}$ explodes into a cycle $\langle z_1, \ldots, z_q$ of $P_{\theta} \rangle$. Let

$$\sigma(\varepsilon)=\prod z_i.$$

Then σ is an analytic function of ε and

$$\sigma = a\varepsilon + b\varepsilon^2 + \mathcal{O}(\varepsilon^3).$$

We define:

$$\Gamma = \frac{-1}{4i\pi q^2} \cdot \frac{b}{a}$$

Reminder

$$B_{s} = \frac{\Upsilon_{\mathcal{E}}(-\nu s)}{q} \pm \frac{\pi^{2}}{q} \operatorname{Re} \gamma\left(\frac{p}{q}\right) + \nu c\left(\frac{p}{q}\right)$$

For the normalized Fatou coordinates:

$$\begin{split} c \left(\frac{p}{q}\right) &= c_{\text{arith}} + c_{\text{geom}} \\ c_{\text{arith}} &= -\frac{1}{q^2} \left(\sum_{k=0}^{m-1} (-1)^k \left(q_{k-1}\log\frac{1}{\alpha_k} + \frac{1}{\alpha_0 \cdots \alpha_k}\right) + (-1)^m q_{m-1}\right) \\ c_{\text{geom}} &= \frac{2\pi}{q} \operatorname{Im} \left(\Gamma + \gamma \log 2\pi\right). \end{split}$$

The numbers c_{arith} , c_{geom} and c(p/q) are independent of which continued fraction of p/q we chose (i.e. independent of the sign of ν).

A normalization of the Fatou Coordinates The Fatou coordinates

Blackboard!

< A >

3

A normalization of the Fatou Coordinates

An expansion of the Fatou Coordinates

Consider the following 1-form:

$$\omega = \operatorname{polar}\left(\frac{1}{f(z) - z} + \frac{q + 1}{2z}\right) dz = \operatorname{polar}\left(\frac{f' - 1}{(f - z)\log f'}\right) dz$$

An α -petal is a petal which is mapped by the Fatou coordinates to a real symmetric sector with opening angle = 2α .

Theorem

As $z \rightarrow 0$ within an α -petal ($\alpha < \pi$):

$$\phi - \int \omega \longrightarrow \mathsf{cst}$$

A normalization of the Fatou Coordinates The normalization

Let $C \in \mathcal{C}$ be the constant in

$$P^{q}_{p/q}(z) = z + C z^{q+1} + \mathcal{O}(z^{q+2}).$$

then one has $a_{-1} = q\gamma$ and $a_{-q+1} = C$ in

$$\omega = \left(\frac{a_{-q+1}}{z^{q+1}} + \cdots + \frac{a_{-1}}{z} + a_0 + a_1 z + \ldots\right) dz.$$

On a given petal, we choose the primitive $\int_0 \omega$ such that

$$\int_{0} \omega = \frac{1}{qCz^{q}} + \frac{a_{-q}}{z^{q-1}} + \cdots + \frac{a_{-2}}{z} + \gamma \log(\pm qCz^{q}) + 0 + o(1)$$

for the branch of log(...) that is real on the axis of the petal $(\pm qCz^q)$ is real on the petal).

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f,\mathcal{P}}^{\text{nor}}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0. Then

$$\Phi^{\mathrm{nor}}_{g\circ f\circ g^{-1},g(\mathcal{P})}=b+\Phi^{\mathrm{nor}}_{f,\mathcal{P}}\circ g^{-1}$$

for some constant b that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_1, \ldots, b_q in $g(z) = b_1 z + b_2 z^2 + \ldots$ Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then b = 0.
- If g = f, then b = -1.

What does it give on an infinitesimal level (g close to id)?

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f,\mathcal{P}}^{\text{nor}}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0. Then

$$\Phi^{\mathrm{nor}}_{g\circ f\circ g^{-1},g(\mathcal{P})}=b+\Phi^{\mathrm{nor}}_{f,\mathcal{P}}\circ g^{-1}$$

for some constant b that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_1, \ldots, b_q in $g(z) = b_1 z + b_2 z^2 + \ldots$ Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then b = 0.
- If g = f, then b = -1.

What does it give on an infinitesimal level (g close to id)?

- 4 周 ト 4 王 ト 4 王 ト

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f,\mathcal{P}}^{\text{nor}}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0. Then

$$\Phi^{\mathrm{nor}}_{g\circ f\circ g^{-1},g(\mathcal{P})}=b+\Phi^{\mathrm{nor}}_{f,\mathcal{P}}\circ g^{-1}$$

for some constant b that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_1, \ldots, b_q in $g(z) = b_1 z + b_2 z^2 + \ldots$ Two features:

• The normalization is invariant under linear change of coordinates: if g is linear then b = 0.

• If g = f, then b = -1.

What does it give on an infinitesimal level (g close to id)?

- 4 周 ト 4 日 ト 4 日 ト

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f,\mathcal{P}}^{\text{nor}}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0. Then

$$\Phi^{\mathrm{nor}}_{g\circ f\circ g^{-1},g(\mathcal{P})}=b+\Phi^{\mathrm{nor}}_{f,\mathcal{P}}\circ g^{-1}$$

for some constant *b* that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_1, \ldots, b_q in $g(z) = b_1 z + b_2 z^2 + \ldots$ Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then b = 0.
- If g = f, then b = -1.

What does it give on an infinitesimal level (g close to id)?

イロト イポト イヨト イヨト 二日

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f,\mathcal{P}}^{\text{nor}}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0. Then

$$\Phi^{\mathrm{nor}}_{g\circ f\circ g^{-1},g(\mathcal{P})}=b+\Phi^{\mathrm{nor}}_{f,\mathcal{P}}\circ g^{-1}$$

for some constant *b* that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_1, \ldots, b_q in $g(z) = b_1 z + b_2 z^2 + \ldots$ Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then b = 0.
- If g = f, then b = -1.

What does it give on an infinitesimal level (g close to id)?

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f,\mathcal{P}}^{\text{nor}}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0. Then

$$\Phi^{\mathrm{nor}}_{g\circ f\circ g^{-1},g(\mathcal{P})}=b+\Phi^{\mathrm{nor}}_{f,\mathcal{P}}\circ g^{-1}$$

for some constant *b* that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_1, \ldots, b_q in $g(z) = b_1 z + b_2 z^2 + \ldots$ Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then b = 0.
- If g = f, then b = -1.

What does it give on an infinitesimal level (g close to id)?

That's all

Thanks.

3

<ロ> (日) (日) (日) (日) (日)

3

<ロ> (日) (日) (日) (日) (日)

3

X. Buff & A. Chéritat (Univ. Toulouse) About the Marmi Moussa Yoccoz conjecture

■ ▶ ◀ ■ ▶ ■ Pisa, April 2007 0 / 23

2

2

Pisa, April 2007 0 / 23

X. Buff & A. Chéritat (Univ. Toulouse) About the Marmi Moussa Yoccoz conjecture

Pisa, April 2007 0 / 23

X. Buff & A. Chéritat (Univ. Toulouse) About the Marmi Moussa Yoccoz conjecture

Pisa, April 2007 0 / 23

▶ ★ 臣 ▶ 二 臣

$\Upsilon_{\mathcal{E}}$ is non constant

• For a family of the form $f_{\theta} = e^{2i\pi\theta} f_0$ with $f_0(z) = z + O(z^2)$, we have $\Upsilon_f(0) - \Upsilon_f(1/2) = \frac{1}{2} \log |2\pi\gamma(f_0)|$

• (Bergweiler Buff Epstein Shishikura) The horn map of a quadratic polynomial satisfies $\operatorname{Re} \gamma \geq 1/4$.

■ Back

$\Upsilon_{\mathcal{E}}$ is non constant

• For a family of the form $f_{ heta}=e^{2i\pi heta}f_0$ with $f_0(z)=z+\mathcal{O}(z^2)$, we have

$$\Upsilon_f(0) - \Upsilon_f(1/2) = rac{1}{2} \log |2\pi\gamma(f_0)|$$

• (Bergweiler Buff Epstein Shishikura) The horn map of a quadratic polynomial satisfies $\operatorname{Re} \gamma \geq 1/4$.

▲ Back