About the Marmi Moussa Yoccoz conjecture

Xavier Buff and Arnaud Chéritat

Univ. Toulouse
Pisa, April 2007

The Marmi Moussa Yoccoz conjecture

Introduction
This conjecture concerns a function that we'll call Υ (Upsilon) and whose definition we begin with.

$r(\alpha)$ is the conformal radius of the Siegel disk of P_{α}. Cgepil

where $\alpha_{n+1}=\operatorname{Frac}\left(\alpha_{n}\right)$ and $\alpha_{0}=\operatorname{Frac}(\alpha)$, is Yoccoz's variant of the Brjuno sum. It is an approximation of $-\log r(\alpha)$, and Υ is the error term:

$$
\Upsilon(\alpha)=\Phi(\alpha)+\log r(\alpha)
$$

The Marmi Moussa Yoccoz conjecture

Introduction
This conjecture concerns a function that we'll call \uparrow (Upsilon) and whose definition we begin with.

$$
P_{\alpha}(z)=e^{2 i \pi \alpha} z+z^{2}
$$

$r(\alpha)$ is the conformal radius of the Siegel disk of P_{α}.

$$
\Phi(\alpha)=\sum_{n=0}^{+\infty} \alpha_{0} \cdots \alpha_{n-1} \log \frac{1}{\alpha_{n}}
$$

where $\alpha_{n+1}=\operatorname{Frac}\left(\alpha_{n}\right)$ and $\alpha_{0}=\operatorname{Frac}(\alpha)$, is Yoccoz's variant of the Brjuno sum. It is an approximation of $-\log r(\alpha)$, and Υ is the error term:

$$
\Upsilon(\alpha)=\Phi(\alpha)+\log r(\alpha)
$$

The Marmi Moussa Yoccoz conjecture
 Introduction

- Yoccoz almost proved that Υ is bounded (around 1988).
- Marmi drew the granh
- (let me show a version I drew in 2002)

The Marmi Moussa Yoccoz conjecture
 Introduction

- Yoccoz almost proved that Υ is bounded (around 1988).
- Marmi drew the graph.
- (let me show a version I drew in 2002)

The Marmi Moussa Yoccoz conjecture

Introduction

- Yoccoz almost proved that Υ is bounded (around 1988).
- Marmi drew the graph.
- (let me show a version I drew in 2002)

The Marmi Moussa Yoccoz conjecture

Introduction

- Yoccoz almost proved that Υ is bounded (around 1988).
- Marmi drew the graph.
- (let me show a version I drew in 2002)

The Marmi Moussa Yoccoz conjecture

Introduction

Associated conjectures.

- (M, (,armi) Υ is the restriction of a cont. func. on \mathbb{R}.
- (MArmi, Moussa, Yoccoz) Υ is $1 / 2$-Hölder.

- (C) Each rationnal is a local Mandumpupward wedges)
- (C) The graph has an horizontal langent at $\alpha=(\sqrt{5}-1) / 2$.

The Marmi Moussa Yoccoz conjecture

Introduction

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R}.
- (MArmi, Moussa, Yoccoz) Υ is $1 / 2$-Hölder.

- (C) r is Lipschitro
- (C) Each rationnal is a local Mandumpupward wedges)
- (C) The graph has an horizontal Mangent at $\alpha=(\sqrt{5}-1) / 2$.

The Marmi Moussa Yoccoz conjecture

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R}. $\sqrt{ }$ BC 2003

The Marmi Moussa Yoccoz conjecture

Introduction

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R}. $\sqrt{ }$ BC 2003
- (Marmi, Moussa, Yoccoz) Υ is $1 / 2$-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha=(\sqrt{5}-1) / 2$.

- (C) Each rationnal is a local mandumpupward wedges)

The Marmi Moussa Yoccoz conjecture

Introduction

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R}. $\sqrt{ }$ BC 2003
- (Marmi, Moussa, Yoccoz) Υ is $1 / 2$-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha=(\sqrt{5}-1) / 2$.
- (C) Υ is differentiable at each side of each rationnal.
- (C)
- (C) Each rationnal is a local MACingumplapward wedges)

The Marmi Moussa Yoccoz conjecture

Introduction

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R}. $\sqrt{ }$ BC 2003
- (Marmi, Moussa, Yoccoz) Υ is $1 / 2$-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha=(\sqrt{5}-1) / 2$.
- (C) r is differentiable at each side of each rationnal.
- (C) Υ is Lipschitz at efach rationnal.

The Marmi Moussa Yoccoz conjecture

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R}. $\sqrt{ }$ BC 2003
- (Marmi, Moussa, Yoccoz) Υ is $1 / 2$-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha=(\sqrt{5}-1) / 2$.
- (C) r is differentiable at each side of each rationnal.
- (C) Υ is Lipschitz at each rationnalf
- (C) Each rationnal is a local maximum/(upward wedges).

The Marmi Moussa Yoccoz conjecture

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R}. $\sqrt{ }$ BC 2003
- (Marmi, Moussa, Yoccoz) Υ is $1 / 2$-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha=(\sqrt{5}-1) / 2$.
- (C) r is differentiable at each side of each rationnal.
- (C) Υ is Lipschitz at gach rationnal
- (C) Each rationnal is a local maximum (upward wedges).
- (C) The graph has an horizontal tangent at $\alpha=(\sqrt{5}-1) / 2$.

The Marmi Moussa Yoccoz conjecture

Associated conjectures.

- (Marmi) Υ is the restriction of a cont. func. on \mathbb{R}. $\sqrt{ }$ BC 2003
- (Marmi, Moussa, Yoccoz) Υ is $1 / 2$-Hölder.
- (someone) $\Upsilon(\alpha)$ reaches its minimum at $\alpha=(\sqrt{5}-1) / 2$.
- (C) r is differentiable at each side of each rationnal.
- (C) Υ is Lipschitz at gach rationnalf
- (C) Each rationnal is a local maximum (upward wedges).
- (C) The graph has an horizontal tangent at $a=\left(\begin{array}{ll}\sqrt{5} & 1\end{array}\right) / 2$.

The Marmi Moussa Yoccoz conjecture

Main theorem of this talk

Theorem (BC)

On every interval I, the function Υ is not δ-Hölder on I for any $\delta>1 / 2$, and has unbounded variation on I.

In other words, if the MMY conjecture holds, then $1 / 2$ is the optimal exponent.

The functional equation

The arithmetical function Φ satisfies the following functional equation

$$
\forall \alpha \in] 0,1], \quad \Phi(\alpha)-\alpha \Phi(1 / \alpha)=\log \frac{1}{\alpha}
$$

Let

$$
H(\alpha)=\Upsilon(\alpha)-\alpha \Upsilon(1 / \alpha)
$$

The functional equation

The expansion
 The value

Theorem (BC 2002)

$$
\Upsilon\left(\frac{p}{q}\right)=\frac{\log 2 \pi}{q}+L_{a}\left(\frac{p}{q}\right)+\Phi_{\text {trunc }}\left(\frac{p}{q}\right)
$$

where
$L_{a}=$ asymptotic size of the parabolic fixed point of $P_{p / q}^{q}$, $\Phi_{\text {trunc }}=$ truncated Yoccoz's Brjuno sum.
(Define these numbers on the blackboard.)

The expansion
 The value

Theorem (BC 2002)

$$
\Upsilon\left(\frac{p}{q}\right)=\frac{\log 2 \pi}{q}+L_{a}\left(\frac{p}{q}\right)+\Phi_{\text {trunc }}\left(\frac{p}{q}\right)
$$

where
$L_{a}=$ asymptotic size of the parabolic fixed point of $P_{p / q}^{q}$, $\Phi_{\text {trunc }}=$ truncated Yoccoz's Brjuno sum.
(Define these numbers on the blackboard.)

Example:

$$
\Upsilon(0)=\log 2 \pi
$$

The expansion

on whom?

Consider one of the two continued fractions of

$$
p / q=\left[a_{0}, \ldots, a_{k}\right]=a_{0}+1 /\left(a_{1}+\ldots\right) .
$$

Let $s \in \mathbb{R}$ and

$$
x_{n}=\left[a_{0}, \ldots, a_{k}, n+s\right]=a_{0}+1 /(\ldots+1 /(n+s))
$$

According to which continued fraction of p / q we chose, $x_{n} \longrightarrow p / q$ either from the right or the left.

The expansion

itself

$$
x_{n}=\left[a_{0}, \ldots, a_{k}, n+s\right]=a_{0}+\frac{1}{\ddots+\frac{1}{n+s}}
$$

Theorem (BC 2006)
There exists constants $A, B_{s} \in \mathbb{R}$ such that if $s \in \mathbb{Q}$ then

$$
\Upsilon\left(x_{n}\right) \underset{n \rightarrow \infty}{=} \Upsilon\left(\frac{p}{q}\right)+A \frac{\log n}{n}+B_{s} \frac{1}{n}+o\left(\frac{1}{n}\right)
$$

The expansion

itself

$$
x_{n}=\left[a_{0}, \ldots, a_{k}, n+s\right]=a_{0}+\frac{1}{\ddots+\frac{1}{n+s}}
$$

Theorem (BC 2006)
There exists constants $A, B_{s} \in \mathbb{R}$ such that if $s \in \mathbb{Q}$ then

$$
\Upsilon\left(x_{n}\right) \underset{n \rightarrow \infty}{=} \Upsilon\left(\frac{p}{q}\right)+A \frac{\log n}{n}+B_{s} \frac{1}{n}+o\left(\frac{1}{n}\right)
$$

Example:

$$
\Upsilon\left(\frac{1}{n}\right)=\log 2 \pi+0-\frac{7.052 \ldots}{n}+o\left(\frac{1}{n}\right)
$$

The expansion
 definitions

- Let I be the holomorphic index of $P_{p / q}^{q}$ at 0 and $\gamma=\frac{\frac{q+1}{2}-I}{q}$ be Écalle's iterative residue divided by q.
- Let \mathcal{E}_{θ} be the parabolic renormalisation (aka horn map). This is a family of maps such that $\mathcal{E}_{\theta}=e^{2 i \pi \theta} \mathcal{E}_{0}, \mathcal{E}_{0}(0)=0$ and $\mathcal{E}_{0}^{\prime}(0)=1$.
- For $s \in \mathbb{O}$. let $\Upsilon_{\mathcal{E}}(s)$ be defined by analogy by $\Upsilon_{\mathcal{E}}(s)=\log (2 \pi) / q+\log L_{a}(\mathcal{E}, s)+\Phi_{\text {trunc }}(s)$.

The familiy \mathcal{E} depends up to conjugacy by a linear map, on choices made in defining the Fatou coordinates of $P_{p / q}^{q}$. Thus the value of $L_{a}(\mathcal{E}, s)$ and $\Upsilon_{\mathcal{E}}(s)$ depend on these choices.

The expansion

definitions

- Let I be the holomorphic index of $P_{p / q}^{q}$ at 0 and $\gamma=\frac{\frac{q+1}{2}-I}{q}$ be Écalle's iterative residue divided by q.
- Let \mathcal{E}_{θ} be the parabolic renormalisation (aka horn map). This is a family of maps such that $\mathcal{E}_{\theta}=e^{2 i \pi \theta} \mathcal{E}_{0}, \mathcal{E}_{0}(0)=0$ and $\mathcal{E}_{0}^{\prime}(0)=1$.
- For $s \in \mathbb{Q}$, let $\Upsilon_{\mathcal{E}}(s)$ be defined by analogy by $\Upsilon_{\mathcal{E}}(s)=\log (2 \pi) / q+\log L_{a}(\mathcal{E}, s)+\phi_{\text {trunc }}(s)$.

The familiy \mathcal{E} depends up to conjugacy by a linear map, on choices made in defining the Fatou coordinates of $P_{p / q}^{q}$. Thus the value of $L_{a}(\mathcal{E}, s)$ and $\Upsilon_{\mathcal{E}}(s)$ depend on these choices.

The expansion

The constant of the logarithmic term

Reminder

$$
\Upsilon\left(x_{n}\right)_{n \rightarrow \infty} \Upsilon\left(\frac{p}{q}\right)+A \frac{\log n}{n}+B_{s} \frac{1}{n}+o\left(\frac{1}{n}\right)
$$

$$
A=-\frac{q_{k-1}}{q^{2}}-\nu \frac{2 \pi \operatorname{lm} \gamma\left(\frac{p}{q}\right)}{q} .
$$

where

- $\nu=(-1)^{k}$ is the side from which $x_{n} \longrightarrow p / q$,
- q_{k-1} is the denominator of the last convergent p_{k-1} / q_{k-1} of p / q before p / q itself.
The numbers ν, q_{k-1} and ν all depend on which continued fraction of p / q we chose.

The expansion

definitions

- Let I be the holomorphic index of $P_{p / q}^{q}$ at 0 and $\gamma=\frac{\frac{q+1}{2}-I}{q}$ be Écalle's iterative residue divided by q.
- Let \mathcal{E}_{θ} be the parabolic renormalisation (aka horn map). This is a family of maps such that $\mathcal{E}_{\theta}=e^{2 i \pi \theta} \mathcal{E}_{0}, \mathcal{E}_{0}(0)=0$ and $\mathcal{E}_{0}^{\prime}(0)=1$.
- For $s \in \mathbb{Q}$, let $\Upsilon_{\mathcal{E}}(s)$ be defined by analogy by $\Upsilon_{\mathcal{E}}(s)=\log (2 \pi) / q+\log L_{a}(\mathcal{E}, s)+\phi_{\text {trunc }}(s)$.

The familiy \mathcal{E} depends up to conjugacy by a linear map, on choices made in defining the Fatou coordinates of $P_{p / q}^{q}$. Thus the value of $L_{a}(\mathcal{E}, s)$ and $\Upsilon_{\mathcal{E}}(s)$ depend on these choices.

The expansion

definitions

- Let I be the holomorphic index of $P_{p / q}^{q}$ at 0 and $\gamma=\frac{\frac{q+1}{2}-I}{q}$ be Écalle's iterative residue divided by q.
- Let \mathcal{E}_{θ} be the parabolic renormalisation (aka horn map). This is a family of maps such that $\mathcal{E}_{\theta}=e^{2 i \pi \theta} \mathcal{E}_{0}, \mathcal{E}_{0}(0)=0$ and $\mathcal{E}_{0}^{\prime}(0)=1$.
- For $s \in \mathbb{Q}$, let $\Upsilon_{\mathcal{E}}(s)$ be defined by analogy by $\Upsilon_{\mathcal{E}}(s)=\log (2 \pi) / q+\log L_{a}(\mathcal{E}, s)+\Phi_{\text {trunc }}(s)$.
The familiy \mathcal{E} depends up to conjugacy by a linear map, on choices made in defining the Fatou coordinates of $P_{p / q}^{q}$. Thus the value of $L_{a}(\mathcal{E}, s)$ and $\Upsilon_{\mathcal{E}}(s)$ depend on these choices.

The expansion

The constant of the linear term

Reminder

$$
\Upsilon\left(x_{n}\right) \underset{n \rightarrow \infty}{=} \Upsilon\left(\frac{p}{q}\right)+A \frac{\log n}{n}+B_{s} \frac{1}{n}+o\left(\frac{1}{n}\right)
$$

$$
B_{s}=\frac{\Upsilon_{\mathcal{E}}(-\nu s)}{q} \pm \frac{\pi^{2}}{q} \operatorname{Re} \gamma\left(\frac{p}{q}\right)+\nu c
$$

Where c is a constant that depends on the choices in Fatou coordinates.
Hence, for our main theorem to hold near p / q, it is enough that ${ }_{\varepsilon}$ b be a non constant function.

We can prove it. Details

The expansion

The constant of the linear term

Reminder

$$
\Upsilon\left(x_{n}\right) \underset{n \rightarrow \infty}{=} \Upsilon\left(\frac{p}{q}\right)+A \frac{\log n}{n}+B_{s} \frac{1}{n}+o\left(\frac{1}{n}\right)
$$

$$
B_{s}=\frac{\Upsilon_{\mathcal{E}}(-\nu s)}{q} \pm \frac{\pi^{2}}{q} \operatorname{Re} \gamma\left(\frac{p}{q}\right)+\nu c
$$

Where c is a constant that depends on the choices in Fatou coordinates.
Hence, for our main theorem to hold near p / q, it is enough that $\Upsilon_{\mathcal{E}}$ be a non constant function.

We can prove it

The expansion

The constant of the linear term

Reminder

$$
\Upsilon\left(x_{n}\right) \underset{n \rightarrow \infty}{ } \Upsilon\left(\frac{p}{q}\right)+A \frac{\log n}{n}+B_{s} \frac{1}{n}+o\left(\frac{1}{n}\right)
$$

$$
B_{s}=\frac{\Upsilon_{\mathcal{E}}(-\nu s)}{q} \pm \frac{\pi^{2}}{q} \operatorname{Re} \gamma\left(\frac{p}{q}\right)+\nu c
$$

Where c is a constant that depends on the choices in Fatou coordinates.
Hence, for our main theorem to hold near p / q, it is enough that $\Upsilon_{\mathcal{E}}$ be a non constant function.

We can prove it

The expansion

The constant of the linear term

Reminder

$$
\Upsilon\left(x_{n}\right) \underset{n \rightarrow \infty}{ } \Upsilon\left(\frac{p}{q}\right)+A \frac{\log n}{n}+B_{s} \frac{1}{n}+o\left(\frac{1}{n}\right)
$$

$$
B_{s}=\frac{\Upsilon_{\mathcal{E}}(-\nu s)}{q} \pm \frac{\pi^{2}}{q} \operatorname{Re} \gamma\left(\frac{p}{q}\right)+\nu c
$$

Where c is a constant that depends on the choices in Fatou coordinates.
Hence, for our main theorem to hold near p / q, it is enough that $\Upsilon_{\mathcal{E}}$ be a non constant function.

We can prove it.

The expansion
 a conjecture

Our expansion implies that the function

$$
\frac{\Upsilon\left(\frac{p}{q}+\nu \varepsilon\right)-\Upsilon(p / q)}{\varepsilon}+\nu q^{2} A \log \varepsilon
$$

where we substitute $\varepsilon=\frac{1}{n+x}$ converges simply for $x \in \mathbb{Q}$ to the function

$$
\nu q^{2}\left(B_{x}-A \log q^{2}\right)=\nu q \Upsilon_{\mathcal{E}}(-\nu x)+\mathrm{cst}
$$

Conjecture
The convergence is uniform.

The expansion

a conjecture

Our expansion implies that the function

$$
\frac{\Upsilon\left(\frac{p}{q}+\nu \varepsilon\right)-\Upsilon(p / q)}{\varepsilon}+\nu q^{2} A \log \varepsilon .
$$

where we substitute $\varepsilon=\frac{1}{n+x}$ converges simply for $x \in \mathbb{Q}$ to the function

$$
\nu q^{2}\left(B_{x}-A \log q^{2}\right)=\nu q \Upsilon_{\mathcal{E}}(-\nu x)+\text { cst } .
$$

The expansion
 a conjecture

Our expansion implies that the function

$$
\frac{\Upsilon\left(\frac{p}{q}+\nu \varepsilon\right)-\Upsilon(p / q)}{\varepsilon}+\nu q^{2} A \log \varepsilon .
$$

where we substitute $\varepsilon=\frac{1}{n+x}$ converges simply for $x \in \mathbb{Q}$ to the function

$$
\nu q^{2}\left(B_{x}-A \log q^{2}\right)=\nu q \Upsilon_{\mathcal{E}}(-\nu x)+\text { cst } .
$$

Conjecture

The convergence is uniform.

The expansion
 about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1 / 2$:

- If \uparrow and $\Upsilon_{\varepsilon_{0}}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[0, \varepsilon]$ and has unbounded variation there.
- Let $p / q \notin \mathbb{Z}$ and $\nu= \pm 1$. If $\Upsilon_{\mathcal{E}_{p / q, \nu}}$ and $\Upsilon_{\mathcal{E}_{\sigma / p}, \nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[p / q, p / q+\nu \varepsilon$] and has unbounded variation there.

These differences do not depend on Voccoz^{\prime} 's Brjuno function Φ, which cancels out, leaving only the conformal radii/asymptotic sizes.
Therefore H cannot be better than $1 / 2$-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p / q.

The expansion

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1 / 2$:

- If Υ and $\Upsilon_{\mathcal{E}_{0}}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[0, \varepsilon]$ and has unbounded variation there. a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[p / q, p / q+\nu \varepsilon$] and has unbounded variation there.

These differences do not depend on Voccoz^{\prime} 's Brjuno function Φ, which cancels out, leaving only the conformal radii/asymptotic sizes. Therefore H cannot be better than $1 / 2$-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p / q.

The expansion

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1 / 2$:

- If Υ and $\Upsilon_{\mathcal{E}_{0}}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[0, \varepsilon]$ and has unbounded variation there.
and has unbounded variation there.
These differences do not depend on Voccoz's Brjuno function Φ, which cancels out, leaving only the conformal radii/asymptotic sizes. Therefore H cannot be better than $1 / 2$-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p / q

The expansion

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1 / 2$:

- If Υ and $\Upsilon_{\mathcal{E}_{0}}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[0, \varepsilon]$ and has unbounded variation there.
- Let $p / q \notin \mathbb{Z}$ and $\nu= \pm 1$. If $\Upsilon_{\mathcal{E}_{p / q}, \nu}$ and $\Upsilon_{\mathcal{E}_{q / p}, \nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[p / q, p / q+\nu \varepsilon$] and has unbounded variation there.

These differences do not depend on Yoccoz's Brjuno function Φ, which cancels out, leaving only the conformal radii/asymptotic sizes. Therefore H cannot be better than $1 / 2$-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p / q

The expansion

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1 / 2$:

- If Υ and $\Upsilon_{\mathcal{E}_{0}}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[0, \varepsilon]$ and has unbounded variation there.
- Let $p / q \notin \mathbb{Z}$ and $\nu= \pm 1$. If $\Upsilon_{\mathcal{E}_{p / q}, \nu}$ and $\Upsilon_{\mathcal{E}_{q / p}, \nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[p / q, p / q+\nu \varepsilon$] and has unbounded variation there.

These differences do not depend on Yoccoz's Brjuno function Φ, which cancels out, leaving only the conformal radii/asymptotic sizes.
likely that it holds near every p / q.

The expansion

about the functional equation

These expansions yield expansions of H at rationnals. We are able to prove that for all $\delta>1 / 2$:

- If Υ and $\Upsilon_{\mathcal{E}_{0}}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[0, \varepsilon]$ and has unbounded variation there.
- Let $p / q \notin \mathbb{Z}$ and $\nu= \pm 1$. If $\Upsilon_{\mathcal{E}_{p / q, \nu}}$ and $\Upsilon_{\mathcal{E}_{q / p}, \nu}$ do not differ on \mathbb{Q} by a constant, then for all $\varepsilon>0, H$ is not δ-Hölder on $[p / q, p / q+\nu \varepsilon$] and has unbounded variation there.

These differences do not depend on Yoccoz's Brjuno function Φ, which cancels out, leaving only the conformal radii/asymptotic sizes.
Therefore H cannot be better than $1 / 2$-Hölder on any $[0, \varepsilon]$ and it is very likely that it holds near every p / q.

The expansion

more constants

- We will describe, if time allows, a normalization of Fatou coordinates, which fixes choices.
- Start from $\theta=p / q$ and perturb it into $\theta=p / q+\varepsilon$. Then the parabolic point of $P_{p / q}$ explodes into a cycle $\left\langle z_{1}, \ldots, z_{q}\right.$ of $\left.P_{\theta}\right\rangle$. Let

Then σ is an analytic function of ε and

We define:

The expansion

more constants

- We will describe, if time allows, a normalization of Fatou coordinates, which fixes choices.
- Start from $\theta=p / q$ and perturb it into $\theta=p / q+\varepsilon$. Then the parabolic point of $P_{p / q}$ explodes into a cycle $\left\langle z_{1}, \ldots, z_{q}\right.$ of $\left.P_{\theta}\right\rangle$. Let

$$
\sigma(\varepsilon)=\prod z_{i}
$$

Then σ is an analytic function of ε and

$$
\sigma=a \varepsilon+b \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{3}\right)
$$

We define:

$$
\Gamma=\frac{-1}{4 i \pi q^{2}} \cdot \frac{b}{a}
$$

The expansion

more constants

Reminder

$$
B_{s}=\frac{\Upsilon_{\mathcal{E}}(-\nu s)}{q} \pm \frac{\pi^{2}}{q} \operatorname{Re} \gamma\left(\frac{p}{q}\right)+\nu c\left(\frac{p}{q}\right)
$$

For the normalized Fatou coordinates:

$$
\begin{gathered}
c\left(\frac{p}{q}\right)=c_{\text {arith }}+c_{\text {geom }} \\
c_{\text {arith }}=-\frac{1}{q^{2}}\left(\sum_{k=0}^{m-1}(-1)^{k}\left(q_{k-1} \log \frac{1}{\alpha_{k}}+\frac{1}{\alpha_{0} \cdots \alpha_{k}}\right)+(-1)^{m} q_{m-1}\right) \\
c_{\text {geom }}=\frac{2 \pi}{q} \operatorname{lm}(\Gamma+\gamma \log 2 \pi) .
\end{gathered}
$$

The numbers $c_{\text {arith }}, c_{\text {geom }}$ and $c(p / q)$ are independent of which continued fraction of p / q we chose (i.e. independent of the sign of ν).

A normalization of the Fatou Coordinates
 The Fatou coordinates

Blackboard!

A normalization of the Fatou Coordinates

An expansion of the Fatou Coordinates

Consider the following 1-form:

$$
\omega=\operatorname{polar}\left(\frac{1}{f(z)-z}+\frac{q+1}{2 z}\right) d z=\operatorname{polar}\left(\frac{f^{\prime}-1}{(f-z) \log f^{\prime}}\right) d z
$$

An α-petal is a petal which is mapped by the Fatou coordinates to a real symmetric sector with opening angle $=2 \alpha$.

Theorem

As $z \longrightarrow 0$ within an α-petal $(\alpha<\pi)$:

$$
\phi-\int \omega \longrightarrow \mathrm{cst}
$$

A normalization of the Fatou Coordinates

The normalization
Let $C \in \mathcal{C}$ be the constant in

$$
P_{p / q}^{q}(z)=z+C z^{q+1}+\mathcal{O}\left(z^{q+2}\right)
$$

then one has $a_{-1}=q \gamma$ and $a_{-q+1}=C$ in

$$
\omega=\left(\frac{a_{-q+1}}{z^{q+1}}+\cdots+\frac{a_{-1}}{z}+a_{0}+a_{1} z+\ldots\right) d z
$$

On a given petal, we choose the primitive $\int_{0} \omega$ such that

$$
\int_{0} \omega=\frac{1}{q C z^{q}}+\frac{a_{-q}}{z^{q-1}}+\cdots \frac{a_{-2}}{z}+\gamma \log \left(\pm q C z^{q}\right)+0+o(1)
$$

for the branch of $\log (\ldots)$ that is real on the axis of the petal ($\pm q C z^{q}$ is real on the petal).

A normalization of the Fatou Coordinates

conjugacy

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f}^{\text {nor }}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0 . Then

$$
\Phi_{g \circ f \circ g^{-1}, g(\mathcal{P})}^{\mathrm{nor}}=b+\Phi_{f, \mathcal{P}}^{\mathrm{nor}} \circ g^{-1}
$$

for some constant b that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_{1}, \ldots, b_{q} in $g(z)=b_{1} z+b_{2} z^{2}+\ldots$ Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then $b=0$.
- If $g=f$, then $b=-1$.

What does it give on an infinitesimal level (g close to id)?

A normalization of the Fatou Coordinates

conjugacy

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f, \mathcal{P}}^{\text {nor }}$ the normalized Fatou coordinates.

Let g be an analytic change of variable that fixes 0 . Then
for some constant b that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_{1}, \ldots, b_{q} in $g(z)=b_{1} z+b_{2} z^{2}+\ldots$. Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then $b=0$.
- If $g=f$, then $b=-1$.

What does it give on an infinitesimal level (g close to id)?

A normalization of the Fatou Coordinates

conjugacy

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f, \mathcal{P}}^{\text {nor }}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0 . Then

$$
\Phi_{g \circ f \circ g^{-1}, g(\mathcal{P})}^{\mathrm{nor}}=b+\Phi_{f, \mathcal{P}}^{\mathrm{nor}} \circ g^{-1}
$$

for some constant b that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_{1}, \ldots, b_{q} in $g(z)=b_{1} z+b_{2} z^{2}+\ldots$

- The normalization is invariant under linear change of co
if g is linear then $b=0$.
- If $g=f$, then $b=-1$.
hat does it give on an infinitesimal level (g close to id)?

A normalization of the Fatou Coordinates

conjugacy

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f, \mathcal{P}}^{\text {nor }}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0 . Then

$$
\Phi_{g \circ f \circ g^{-1}, g(\mathcal{P})}^{\mathrm{nor}}=b+\Phi_{f, \mathcal{P}}^{\mathrm{nor}} \circ g^{-1}
$$

for some constant b that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_{1}, \ldots, b_{q} in $g(z)=b_{1} z+b_{2} z^{2}+\ldots$ Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then $b=0$.
- If $g=f$, then $b=-1$.

What does it give on an infinitesimal level (g close to id)?

A normalization of the Fatou Coordinates

conjugacy

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f, \mathcal{P}}^{\text {nor }}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0 . Then

$$
\Phi_{g \circ f \circ g^{-1}, g(\mathcal{P})}^{\mathrm{nor}}=b+\Phi_{f, \mathcal{P}}^{\mathrm{nor}} \circ g^{-1}
$$

for some constant b that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_{1}, \ldots, b_{q} in $g(z)=b_{1} z+b_{2} z^{2}+\ldots$ Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then $b=0$.
- If $g=f$, then $b=-1$.

$$
\text { What does it give on an infinitesimal level (} g \text { close to id)? }
$$

A normalization of the Fatou Coordinates

conjugacy

The behaviour under conjugacy is to be studied: for a parabolic map f fixing 0 and one of its petal \mathcal{P} denote $\Phi_{f, \mathcal{P}}^{\text {nor }}$ the normalized Fatou coordinates. Let g be an analytic change of variable that fixes 0 . Then

$$
\Phi_{g \circ f \circ g^{-1}, g(\mathcal{P})}^{\mathrm{nor}}=b+\Phi_{f, \mathcal{P}}^{\mathrm{nor}} \circ g^{-1}
$$

for some constant b that does not depend on the petal and can be explicitly computed in terms of the coefficients a_{-q+1}, \ldots, a_{-2} of ω and the coefficients b_{1}, \ldots, b_{q} in $g(z)=b_{1} z+b_{2} z^{2}+\ldots$ Two features:

- The normalization is invariant under linear change of coordinates: if g is linear then $b=0$.
- If $g=f$, then $b=-1$.

What does it give on an infinitesimal level (g close to id)?

That's all

Thanks.

\qquad
4

$\Upsilon_{\mathcal{E}}$ is non constant

- For a family of the form $f_{\theta}=e^{2 i \pi \theta} f_{0}$ with $f_{0}(z)=z+\mathcal{O}\left(z^{2}\right)$, we have

$$
\Upsilon_{f}(0)-\Upsilon_{f}(1 / 2)=\frac{1}{2} \log \left|2 \pi \gamma\left(f_{0}\right)\right|
$$

- (Bergweiler Buff Epstein Shishikura) The horn map of a quadratic polynomial satisfies $\operatorname{Re} \gamma \geq 1 / 4$.

$\Upsilon_{\mathcal{E}}$ is non constant

- For a family of the form $f_{\theta}=e^{2 i \pi \theta} f_{0}$ with $f_{0}(z)=z+\mathcal{O}\left(z^{2}\right)$, we have

$$
\Upsilon_{f}(0)-\Upsilon_{f}(1 / 2)=\frac{1}{2} \log \left|2 \pi \gamma\left(f_{0}\right)\right|
$$

- (Bergweiler Buff Epstein Shishikura) The horn map of a quadratic polynomial satisfies $\operatorname{Re} \gamma \geq 1 / 4$.

