The near parabolic renormalization of Inou and Shishikura

Arnaud Chéritat

Institut de Mathématiques de Toulouse

Oberwolfach, April 2008

Renormalization in complex dynamics

About renormalization

- Powerful
- Mysterious (for the speaker)
- No unified notion

One kind of renormalization used in discrete dynamics (very roughly):

- take a dynamical system $f \colon X \longrightarrow X$,
- replace f by one of its iterates fⁿ,
- restrict f^n to a subset U of X,
- rescale your new dynamical system fⁿ|U so as to have it satisfy some normalization.

Example: the Douady-Hubbard renormalization, that explains why there are little copies of M in M.

About renormalization

- Powerful
- Mysterious (for the speaker)
- No unified notion

One kind of renormalization used in discrete dynamics (very roughly):

- take a dynamical system $f: X \longrightarrow X$,
- replace f by one of its iterates fⁿ,
- restrict fⁿ to a subset U of X,
- rescale your new dynamical system fⁿ|_U so as to have it satisfy some normalization.

Example: the Douady-Hubbard renormalization, that explains why there are little copies of M in M.

About renormalization

- Powerful
- Mysterious (for the speaker)
- No unified notion

One kind of renormalization used in discrete dynamics (very roughly):

- take a dynamical system $f: X \longrightarrow X$,
- replace f by one of its iterates fⁿ,
- restrict fⁿ to a subset U of X,
- rescale your new dynamical system fⁿ|_U so as to have it satisfy some normalization.

Example: the Douady-Hubbard renormalization, that explains why there are little copies of M in M.

(a bit of) generalization

The old and the new dynamical systems do not need to be defined everywhere, the iterate $x \mapsto f^k(x)$ may have its order k that depends on $x \in U$: k = k(x), the rescaling may be replaced by a more general conjugacy.

Example: first-return maps.

(a bit of) generalization

The old and the new dynamical systems do not need to be defined everywhere, the iterate $x \mapsto f^k(x)$ may have its order k that depends on $x \in U$: k = k(x), the rescaling may be replaced by a more general conjugacy.

Example: first-return maps.

Renormalization operator

Once a renormalization procedure is defined, one gets a partially defined map $\mathcal{R} : X \longrightarrow X$, where X is a set of dynamical systems.

Usually X is infinite dimensional and \mathcal{R} is analytic.

The renormalization operator associated to Feigenbaum's bifurcation cascade has a fixed point. It is hyperbolic at this point. This hyperbolicity proves several experimental findings.

A. Chéritat (IMT)

Near parabolic renormalization

Renormalization operator

Once a renormalization procedure is defined, one gets a partially defined map $\mathcal{R} : X \longrightarrow X$, where X is a set of dynamical systems. Usually X is infinite dimensional and \mathcal{R} is analytic.

The renormalization operator associated to Feigenbaum's bifurcation cascade has a fixed point. It is hyperbolic at this point. This hyperbolicity proves several experimental findings.

A. Chéritat (IMT)

Near parabolic renormalization

Heuristics: renormalization fixed points are universal.

Example: Feigenbaum's universal constant $\delta = 4.669...$ is the biggest eigenvalue of the previous operator.

Beyond fixed points, a more global picture is conjectured (Lanford's programme) for several renormalization operators, and proved for a few: there is an invariant compact set, a Cantor or a Solenoid, on which the operator is hyperbolic.

That is enough generalities for this talk...

Heuristics: renormalization fixed points are universal.

Example: Feigenbaum's universal constant $\delta = 4.669...$ is the biggest eigenvalue of the previous operator.

Beyond fixed points, a more global picture is conjectured (Lanford's programme) for several renormalization operators, and proved for a few: there is an invariant compact set, a Cantor or a Solenoid, on which the operator is hyperbolic.

That is enough generalities for this talk...

프 에 에 프 어

Heuristics: renormalization fixed points are universal.

Example: Feigenbaum's universal constant $\delta = 4.669...$ is the biggest eigenvalue of the previous operator.

Beyond fixed points, a more global picture is conjectured (Lanford's programme) for several renormalization operators, and proved for a few: there is an invariant compact set, a Cantor or a Solenoid, on which the operator is hyperbolic.

That is enough generalities for this talk. .

Heuristics: renormalization fixed points are universal.

Example: Feigenbaum's universal constant $\delta = 4.669...$ is the biggest eigenvalue of the previous operator.

Beyond fixed points, a more global picture is conjectured (Lanford's programme) for several renormalization operators, and proved for a few: there is an invariant compact set, a Cantor or a Solenoid, on which the operator is hyperbolic.

That is enough generalities for this talk...

Start from an analytic map fixing 0 with multiplier 1:

$$f(z)=z+a_2z^2+\ldots$$

Assume $a_2 \neq 0$, i.e. there is only one repelling and one attracting petal in a Leau flower for the parbolic point at the origin.

Start from an analytic map fixing 0 with multiplier 1:

$$f(z)=z+a_2z^2+\ldots$$

Assume $a_2 \neq 0$, i.e. there is only one repelling and one attracting petal in a Leau flower for the parbolic point at the origin.

Start from an analytic map fixing 0 with multiplier 1:

$$f(z)=z+a_2z^2+\ldots$$

Assume $a_2 \neq 0$, i.e. there is only one repelling and one attracting petal in a Leau flower for the parbolic point at the origin.

Start from an analytic map fixing 0 with multiplier 1:

$$f(z)=z+a_2z^2+\ldots$$

Assume $a_2 \neq 0$, i.e. there is only one repelling and one attracting petal in a Leau flower for the parbolic point at the origin.

The horn map is defined by

$$\begin{array}{c} h_{\sigma} = \ T_{\sigma} \circ \Phi_{att} \circ \Phi_{\mathsf{rep}}^{-1} \\ \text{rep. Fatou} & \xrightarrow{\Phi_{\mathsf{rep}}^{-1}} \\ \text{coords} & \xrightarrow{\Phi_{\mathsf{rep}}} \text{dyn. plane} \xrightarrow{\Phi_{\mathsf{att}}} \\ \text{att. Fatou} & \xrightarrow{T_{\sigma}} \\ \text{coords} & \xrightarrow{\mathsf{Fatou}} \\ \text{Fatou coords} \end{array}$$

where σ is a parameter (the phase), and commutes with T_1 on its domain of definition, which contains an upper and a lower half plane.

There is a well defined quotient map $h_{\sigma} \mod \mathbb{Z}$ acting on the cylinder \mathbb{C}/\mathbb{Z} .

Another point of view on the same object

Equivalent definition of the horn map on the cylinder (without extending the petals)

The quotient of a petal by the equivalence relation $z \sim f(z)$ is isomorphic, via the Fatou coordinates, to the cylinder \mathbb{C}/\mathbb{Z} . This quotient is refferred to as the *attracting/repelling cylinder*.

Now take a fundamental domain D_{rep} in the repeling petal. Take a point in the repelling cylinder. Consider the corresponding point w in D_{rep} . Iterate w until it falls in the attracting petal. To such an iterate corresponds a uniquely defined point in the attracting cylinder. Last, use an identification, of the form T_{σ} in Fatou coordinates, to go from the attracting cylinder back to the repelling cylinder.

$$\mathcal{R}(f) \stackrel{\mathsf{def}}{=} g_{\sigma}$$

Note that this puts the emphasis on the upper end of the cylinder. If one prefers the lower end, replace the conjugacy $z \mapsto e^{2i\pi z}$ by $z \mapsto e^{-2i\pi z}$.

How well-defined is this map?

First, recall that Fatou coordinates are unique only up to addition of a constant. Consequence: $\mathcal{R}(f)$ is unique only up to conjugacy by a linear map. Fortunately, conjugating f itself by a linear map does not change g, so we let \mathcal{R} act on the set of maps f taken up to linear conjugacy. One may choose a canonical representative in each class (=normalization).

The set of definition of g_{σ} is not clearly well defined either, even if we fix a normalization. To solve that problem, we can work with germs instead of maps.

▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨー ショル

$$\mathcal{R}(f) \stackrel{\mathsf{def}}{=} g_{\sigma}$$

Note that this puts the emphasis on the upper end of the cylinder. If one prefers the lower end, replace the conjugacy $z \mapsto e^{2i\pi z}$ by $z \mapsto e^{-2i\pi z}$.

How well-defined is this map?

First, recall that Fatou coordinates are unique only up to addition of a constant. Consequence: $\mathcal{R}(f)$ is unique only up to conjugacy by a linear map. Fortunately, conjugating f itself by a linear map does not change g, so we let \mathcal{R} act on the set of maps f taken up to linear conjugacy. One may choose a canonical representative in each class (=normalization).

The set of definition of g_{σ} is not clearly well defined either, even if we fix a normalization. To solve that problem, we can work with germs instead of maps.

▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨー ショル

$$\mathcal{R}(f) \stackrel{\mathsf{def}}{=} g_{\sigma}$$

Note that this puts the emphasis on the upper end of the cylinder. If one prefers the lower end, replace the conjugacy $z \mapsto e^{2i\pi z}$ by $z \mapsto e^{-2i\pi z}$.

How well-defined is this map?

First, recall that Fatou coordinates are unique only up to addition of a constant. Consequence: $\mathcal{R}(f)$ is unique only up to conjugacy by a linear map. Fortunately, conjugating f itself by a linear map does not change g, so we let \mathcal{R} act on the set of maps f taken up to linear conjugacy. One may choose a canonical representative in each class (=normalization).

The set of definition of g_{σ} is not clearly well defined either, even if we fix a normalization. To solve that problem, we can work with germs instead of maps.

▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨー ショル

$$\mathcal{R}(f) \stackrel{\mathsf{def}}{=} g_{\sigma}$$

Note that this puts the emphasis on the upper end of the cylinder. If one prefers the lower end, replace the conjugacy $z \mapsto e^{2i\pi z}$ by $z \mapsto e^{-2i\pi z}$.

How well-defined is this map?

First, recall that Fatou coordinates are unique only up to addition of a constant. Consequence: $\mathcal{R}(f)$ is unique only up to conjugacy by a linear map. Fortunately, conjugating f itself by a linear map does not change g, so we let \mathcal{R} act on the set of maps f taken up to linear conjugacy. One may choose a canonical representative in each class (=normalization).

The set of definition of g_{σ} is not clearly well defined either, even if we fix a normalization. To solve that problem, we can work with germs instead of maps.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つくや

An invariant class

There is an invariant class which has been known since around 1990 (Shishikura). It consists in all holomorphic functions $f : U \to \mathbb{C}$ with:

- U is a connected open set
- $0 \in U$ and $f(z) = z + a_2 z^2 + \ldots$ with $a_2 \neq 0$,
- f is a ramified covering from $U \setminus \{0\}$ to \mathbb{C}^* ,
- all critical points have local degree 2,
- there is exactly one critical value.

For instance, the polynomial $z + z^2$ belongs to this family.

Let us call C_0 the set of maps satisfying these conditions and *normalized* as follows: the critical value is equal to -1/4 (same as for $z + z^2$). Then we consider the (well-defined) renormalization operator

$$\mathcal{R}:\ \mathcal{C}_0\to \mathcal{C}_0$$

An invariant class

There is an invariant class which has been known since around 1990 (Shishikura). It consists in all holomorphic functions $f : U \to \mathbb{C}$ with:

- U is a connected open set
- $0 \in U$ and $f(z) = z + a_2 z^2 + \ldots$ with $a_2 \neq 0$,
- f is a ramified covering from $U \setminus \{0\}$ to \mathbb{C}^* ,
- all critical points have local degree 2,
- there is exactly one critical value.

For instance, the polynomial $z + z^2$ belongs to this family.

Let us call C_0 the set of maps satisfying these conditions and *normalized* as follows: the critical value is equal to -1/4 (same as for $z + z^2$). Then we consider the (well-defined) renormalization operator

$$\mathcal{R}:\ \mathcal{C}_0\to \mathcal{C}_0$$

A common covering structure for their horn maps

This $\mathcal{R}:\ \mathcal{C}_0\to \mathcal{C}_0$ is not surjective.

Its image is a class C_1 with the following property: any two maps $f_1, f_2 \in C_1$ are equivalent covers over \mathbb{C} , i.e. $\exists \phi$ an isomorphism between their sets of definition such that $f_2 = f_1 \circ \phi$.

Why? Because for all map in C_0 , the immediate parabolic basin U contains exactly one critical point and moreover, f is conjugated on U to a universal map: the degree 2 Blachke product $\frac{3z^2+1}{3+z^2}$ on \mathbb{D} .

Let's look at my preferred member of \mathcal{C}_1 , namely $\mathcal{R}(z+z^2)$. —>

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A common covering structure for their horn maps

This $\mathcal{R}:\ \mathcal{C}_0\to \mathcal{C}_0$ is not surjective.

Its image is a class C_1 with the following property: any two maps $f_1, f_2 \in C_1$ are equivalent covers over \mathbb{C} , i.e. $\exists \phi$ an isomorphism between their sets of definition such that $f_2 = f_1 \circ \phi$.

Why? Because for all map in C_0 , the immediate parabolic basin U contains exactly one critical point and moreover, f is conjugated on U to a universal map: the degree 2 Blachke product $\frac{3z^2+1}{3+z^2}$ on \mathbb{D} .

Let's look at my preferred member of C_1 , namely $\mathcal{R}(z+z^2)$.

 $\Phi_-: \stackrel{\circ}{K}
ightarrow \mathbb{C}$ attracting Fatou coordinates, extended $\Psi_+:\ \mathbb{C}\to\mathbb{C}$ repelling Fatou parameterization, extended

3

Introducing some flexibility

The class \mathcal{C}_1 is of the form

$$\mathcal{C}_1 = \left\{ f_0 \circ \phi^{-1} \middle| \begin{array}{l} \phi : \ \mathsf{Def}(f_0) \to \mathbb{C} \text{ is a univalent analytic} \\ \text{map with } \phi(0) = 1, \ \phi'(0) = 1 \end{array} \right\}$$

We view this as a ramified covering over \mathbb{C} , with a given "Covering structure", which is a mix of topological data (homotopy) and analytic data (moduli).

Since \mathcal{R} maps \mathcal{C}_1 to a strict subset of \mathcal{C}_1 , it is tempting to deduce from this a non-expansion statement, like in Schwarz's lemma; or even better, a strict contraction and the existence of a unique fixed point of \mathcal{R} in \mathcal{C}_1 .

However, ot is not obvious how to put a complex structure on the space of univalent maps.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q ()

・ロト・(部・・モト・モー・)への

・ロト・(部・・モト・モー・)への

The loosened invariant class

Fix f_0 in \mathcal{C}_1 and let

$$\mathcal{C}_1(V) = \left\{ f_0 \circ \phi^{-1} \middle| \begin{array}{l} \phi : \ V \to \mathbb{C} \text{ is a univalent analytic} \\ \max \text{ map with } \phi(0) = 1, \ \phi'(0) = 1 \\ \text{ and } \phi(V) \text{ is a quasidisk} \end{array} \right\},$$

Thus " $V' \subset V \implies \mathcal{C}_1(V) \subset \mathcal{C}_1(V')$ ".

Theorem (Inou , Shishikura): There exists some $\varepsilon > 0$ such that: for the domain V corresponding to what was illustrated in the previous slide and for some domain $V' \subset \subset V$, one can still define a parabolic renormalization \mathcal{R} (which agrees with the previously defined \mathcal{R} at the level of germs) such that $\mathcal{R}(\mathcal{C}_1(V')) \subset \mathcal{C}_1(V)$.

In particular $\mathcal{R}(\mathcal{C}_1(V')) \subset \mathcal{C}_1(V')$.

The benefits of leaving some flexibility are manifold:

- Contraction can be proved (c.f. Inou and Shishikura, using the Teichmüller distance between quasidisks).
- Perturbations can be done, easily.

イロト イポト イヨト イヨト

The loosened invariant class

Fix f_0 in \mathcal{C}_1 and let

$$\mathcal{C}_1(V) = \left\{ f_0 \circ \phi^{-1} \middle| \begin{array}{l} \phi : \ V \to \mathbb{C} \text{ is a univalent analytic} \\ \max \text{ map with } \phi(0) = 1, \ \phi'(0) = 1 \\ \text{ and } \phi(V) \text{ is a quasidisk} \end{array} \right\},$$

Thus " $V' \subset V \implies \mathcal{C}_1(V) \subset \mathcal{C}_1(V')$ ".

Theorem (Inou 稲生, Shishikura 宍倉): There exists some $\varepsilon > 0$ such that: for the domain V corresponding to what was illustrated in the previous slide and for some domain $V' \subset \subset V$, one can still define a parabolic renormalization \mathcal{R} (which agrees with the previously defined \mathcal{R} at the level of germs) such that $\mathcal{R}(\mathcal{C}_1(V')) \subset \mathcal{C}_1(V)$.

In particular $\mathcal{R}(\mathcal{C}_1(V')) \subset \mathcal{C}_1(V')$.

The benefits of leaving some flexibility are manifold:

- Contraction can be proved (c.f. Inou and Shishikura, using the Teichmüller distance between quasidisks).
- Perturbations can be done, easily.

Perturbations

Shorthand: $C_2 \stackrel{\text{\tiny def}}{=} C_1(V')$.

Theorem (稲生, 宍倉): If $f = e^{2i\pi\alpha}g$ with $g \in C_2$ then one can define a (cylinder/near-parabolic) renormalization of f, $\mathcal{R}(f)$ which still belongs to C_2 provided $\alpha \in]0, \varepsilon[$, and corresponds to (sort of) a return map.

Since the set of univalent maps is compact, ε can be taken independent of g ($\varepsilon = 1/23$ seems to work, c.f. numerical experiments by Inou).

The renormalization picture

