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Renormalization

About renormalization

Powerful

Mysterious (for the speaker)

No unified notion

One kind of renormalization used in discrete dynamics (very roughly):

take a dynamical system f : X −→ X ,

replace f by one of its iterates f n,

restrict f n to a subset U of X ,

rescale your new dynamical system f n|U so as to have it satisfy some
normalization.

Example: the Douady-Hubbard renormalization, that explains why there
are little copies of M in M. —>
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Renormalization
(a bit of) generalization

The old and the new dynamical systems do not need to be defined
everywhere, the iterate x 7→ f k(x) may have its order k that depends on
x ∈ U: k = k(x), the rescaling may be replaced by a more general
conjugacy.

Example: first-return maps.
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Renormalization operator
Once a renormalization procedure is defined, one gets a partially defined
map R : X −→ X , where X is a set of dynamical systems.
Usually X is infinite dimensional and R is analytic.

The renormalization operator associated to Feigenbaum’s bifurcation
cascade has a fixed point. It is hyperbolic at this point. This hyperbolicity
proves several experimental findings.
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map R : X −→ X , where X is a set of dynamical systems.
Usually X is infinite dimensional and R is analytic.

Fixed point
Feigenbaum’s parameter

Stable invariant variety (codim 1)

Unstable invariant variety (dim 1)

The quadratic family (dim 1)

Feigenbaum renormalization

The renormalization operator associated to Feigenbaum’s bifurcation
cascade has a fixed point. It is hyperbolic at this point. This hyperbolicity
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The big picture

Heuristics: renormalization fixed points are universal.

Example: Feigenbaum’s universal constant δ = 4.669 . . . is the biggest
eigenvalue of the previous operator.

Beyond fixed points, a more global picture is conjectured (Lanford’s
programme) for several renormalization operators, and proved for a few:
there is an invariant compact set, a Cantor or a Solenoid, on which the
operator is hyperbolic.

That is enough generalities for this talk. . .
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A. Chéritat (IMT) Near parabolic renormalization Oberwolfach, April 2008 7 / 19



Definition of the parabolic renormalization

Start from an analytic map fixing 0 with multiplier 1:

f (z) = z + a2z
2 + . . .

Assume a2 6= 0, i.e. there is only one repelling and one attracting petal in
a Leau flower for the parbolic point at the origin.

To this, are associated Fatou coordinates, Φrep on the repelling petal and
Φatt on the attracting petal, that conjugate f to the translation T1 on
“big” domains near infinity. We may assume that the petals are big
enough so as to have their image by Φ contain an upper and a lower half
plane (otherwise, use the relation Φ ◦ f = T1 ◦ Φ to extend Φ).
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The horn map is defined by

hσ = Tσ ◦ Φatt ◦ Φ−1
rep

rep. Fatou
coords

Φ−1
rep

−→ dyn. plane
Φatt−→

att. Fatou
coords

Tσ−→
back to rep.
Fatou coords

where σ is a parameter (the phase), and commutes with T1 on its domain
of definition, which contains an upper and a lower half plane.

rep att rep att

There is a well defined quotient map hσ mod Z acting on the cylinder C/Z.

A. Chéritat (IMT) Near parabolic renormalization Oberwolfach, April 2008 9 / 19



Another point of view on the same object
Equivalent definition of the horn map on the cylinder (without

extending the petals)

The quotient of a petal by the equivalence relation z ∼ f (z) is isomorphic, via the
Fatou coordinates, to the cylinder C/Z. This quotient is refferred to as the
attracting/repelling cylinder.
Now take a fundamental domain Drep in the repeling petal. Take a point in the
repelling cylinder. Consider the corresponding point w in Drep. Iterate w until it
falls in the attracting petal. To such an iterate corresponds a uniquely defined
point in the attracting cylinder. Last, use an identification, of the form Tσ in
Fatou coordinates, to go from the attracting cylinder back to the repelling
cylinder.

f

Drep
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The map e2iπz induces an isomorphism from C/Z to C
∗. Conjugating

hσ mod Z by this map yields an analytic map gσ, defined in a
neighborhood of 0 and ∞ and fixing both, with multipliers 6= 0. Since
gσ = e2iπσg0, there is a unique value of σ such that g ′

σ(0) = 1. For this σ
we get the the parabolic renormalization of f :

R(f )
def
= gσ

Note that this puts the emphasis on the upper end of the cylinder. If one
prefers the lower end, replace the conjugacy z 7→ e2iπz by z 7→ e−2iπz .

How well-defined is this map?

First, recall that Fatou coordinates are unique only up to addition of a constant. Consequence:
R(f ) is unique only up to conjugacy by a linear map. Fortunately, conjugating f itself by a
linear map does not change g , so we let R act on the set of maps f taken up to linear
conjugacy. One may choose a canonical representative in each class (=normalization).

The set of definition of gσ is not clearly well defined either, even if we fix a normalization. To
solve that problem, we can work with germs instead of maps.
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An invariant class
There is an invariant class which has been known since around 1990
(Shishikura). It consists in all holomorphic functions f : U → C with:

U is a connected open set

0 ∈ U and f (z) = z + a2z
2 + . . . with a2 6= 0,

f is a ramified covering from U \ {0} to C
∗,

all critical points have local degree 2,

there is exactly one critical value.

For instance, the polynomial z + z2 belongs to this family.

Let us call C0 the set of maps satisfying these conditions and normalized
as follows: the critical value is equal to −1/4 (same as for z + z2). Then
we consider the (well-defined) renormalization operator

R : C0 → C0

A. Chéritat (IMT) Near parabolic renormalization Oberwolfach, April 2008 12 / 19



An invariant class
There is an invariant class which has been known since around 1990
(Shishikura). It consists in all holomorphic functions f : U → C with:

U is a connected open set

0 ∈ U and f (z) = z + a2z
2 + . . . with a2 6= 0,

f is a ramified covering from U \ {0} to C
∗,

all critical points have local degree 2,

there is exactly one critical value.

For instance, the polynomial z + z2 belongs to this family.

Let us call C0 the set of maps satisfying these conditions and normalized
as follows: the critical value is equal to −1/4 (same as for z + z2). Then
we consider the (well-defined) renormalization operator

R : C0 → C0
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A common covering structure for their

horn maps

This R : C0 → C0 is not surjective.

Its image is a class C1 with the following property: any two maps
f1, f2 ∈ C1 are equivalent covers over C, i.e. ∃φ an isomorphism between
their sets of definition such that f2 = f1 ◦ φ.

Why? Because for all map in C0, the immediate parabolic basin U
contains exactly one critical point and moreover, f is conjugated on U to a
universal map: the degree 2 Blachke product 3z2+1

3+z2 on D.

Let’s look at my preferred member of C1, namely R(z + z2). —>
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Ψ+ Φ−

Φ− :
◦

K → C attracting Fatou coordinates, extended

Ψ+ : C → C repelling Fatou parameterization, extended
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Introducing some flexibility

The class C1 is of the form

C1 =

{

f0 ◦ φ−1

∣

∣

∣

∣

φ : Def(f0) → C is a univalent analytic
map with φ(0) = 1, φ′(0) = 1

}

.

We view this as a ramified covering over C, with a given “Covering
structure”, which is a mix of topological data (homotopy) and analytic
data (moduli).

Since R maps C1 to a strict subset of C1, it is tempting to deduce from
this a non-expansion statement, like in Schwarz’s lemma; or even better, a
strict contraction and the existence of a unique fixed point of R in C1.

However, ot is not obvious how to put a complex structure on the space of
univalent maps.
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The loosened invariant class
Fix f0 in C1 and let

C1(V ) =







f0 ◦ φ−1

∣

∣

∣

∣

∣

∣

φ : V → C is a univalent analytic
map with φ(0) = 1, φ′(0) = 1
and φ(V ) is a quasidisk







,

Thus “V ′ ⊂ V =⇒ C1(V ) ⊂ C1(V
′)”.

Theorem (Inou , Shishikura ): There exists some ε > 0 such that: for the domain
V corresponding to what was illustrated in the previous slide and for some domain
V ′ ⊂⊂ V , one can still define a parabolic renormalization R (which agrees with
the previously defined R at the level of germs) such that R(C1(V

′)) ⊂ C1(V ).

In particular R(C1(V
′)) ⊂ C1(V

′).

The benefits of leaving some flexibility are manifold:

Contraction can be proved (c.f. Inou and Shishikura, using the Teichmüller
distance between quasidisks).

Perturbations can be done, easily.
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Perturbations

Shorthand: C2
def
= C1(V

′).

Theorem ( , ): If f = e2iπαg with g ∈ C2 then one can define a
(cylinder/near-parabolic) renormalization of f , R(f ) which still belongs to
C2 provided α ∈]0, ε[, and corresponds to (sort of) a return map.

Since the set of univalent maps is compact, ε can be taken independent of
g (ε = 1/23 seems to work, c.f. numerical experiments by Inou).
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The renormalization picture

Note that if f = e2iπαg

with α ∈]0, ε[ and g ∈ C2 then R(f ) = e2iπβh

with h ∈ C2 and β =
−1

α
mod Z.

α

g

R
−→

β

h
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