The near parabolic renormalization of
 Inou and Shishikura

Arnaud Chéritat

Institut de Mathématiques de Toulouse

Oberwolfach, April 2008
(1) Renormalization in complex dynamics
(2) The parabolic renormalization
(3) Near parabolic renormalization

Renormalization

About renormalization

- Powerful
- Mysterious (for the speaker)
- No unified notion

One kind of renormalization used in discrete dynamics (very roughly):

- take a dynamical system $f: X \longrightarrow X$,
- replace f by one of its iterates f^{n},
- restrict f^{n} to a subset U of X,
- rescale your new dynamical system $f^{n} \|$ so as to have it satisfy some normalization.

Example: the Douady-Hubbard renormalization, that explains why there are little copies of M in M.

Renormalization

About renormalization

- Powerful
- Mysterious (for the speaker)
- No unified notion

One kind of renormalization used in discrete dynamics (very roughly):

- take a dynamical system $f: X \longrightarrow X$,
- replace f by one of its iterates f^{n},
- restrict f^{n} to a subset U of X,
- rescale your new dynamical system $f^{n} \mid \cup$ so as to have it satisfy some normalization.

Example: the Douady-Hubbard renormalization, that explains why there are little copies of M in M. $—>$

Renormalization

About renormalization

- Powerful
- Mysterious (for the speaker)
- No unified notion

One kind of renormalization used in discrete dynamics (very roughly):

- take a dynamical system $f: X \longrightarrow X$,
- replace f by one of its iterates f^{n},
- restrict f^{n} to a subset U of X,
- rescale your new dynamical system $f^{n} \mid \cup$ so as to have it satisfy some normalization.

Example: the Douady-Hubbard renormalization, that explains why there are little copies of M in $M . \quad->$

Renormalization

(a bit of) generalization

The old and the new dynamical systems do not need to be defined everywhere, the iterate $x \mapsto f^{k}(x)$ may have its order k that depends on $x \in U: k=k(x)$, the rescaling may be replaced by a more general conjugacy.

Example: first-return maps.

Renormalization

(a bit of) generalization
The old and the new dynamical systems do not need to be defined everywhere, the iterate $x \mapsto f^{k}(x)$ may have its order k that depends on $x \in U: k=k(x)$, the rescaling may be replaced by a more general conjugacy.

Example: first-return maps.

Renormalization operator

Once a renormalization procedure is defined, one gets a partially defined map $\mathcal{R}: X \longrightarrow X$, where X is a set of dynamical systems.
Usually X is infinite dimensional and \mathcal{R} is analytic.

The renormalization operator associated to Feigenbaum's bifurcation cascade has a fixed point. It is hyperbolic at this point. This hyperbolicity proves several experimental findings.

Renormalization operator

Once a renormalization procedure is defined, one gets a partially defined map $\mathcal{R}: X \longrightarrow X$, where X is a set of dynamical systems. Usually X is infinite dimensional and \mathcal{R} is analytic.

The renormalization operator associated to Feigenbaum's bifurcation cascade has a fixed point. It is hyperbolic at this point. This hyperbolicity proves several experimental findings.

The big picture

Heuristics: renormalization fixed points are universal.
Example: Feigenbaum's universal constant $\delta=4.669 \ldots$ is the biggest eigenvalue of the previous operator.

Beyond fixed points, a more global picture is conjectured (Lanford's programme) for several renormalization operators, and proved for a few: there is an invariant compact set, a Cantor or a Solenoid, on which the operator is hyperbolic.

That is enough generalities for this talk.

The big picture

Heuristics: renormalization fixed points are universal.

Example: Feigenbaum's universal constant $\delta=4.669 \ldots$ is the biggest eigenvalue of the previous operator.

Beyond fixed points, a more global picture is conjectured (Lanford's programme) for several renormalization operators, and proved for a few: there is an invariant compact set, a Cantor or a Solenoid, on which the operator is hyperbolic.

That is enough generalities for this talk.

The big picture

Heuristics: renormalization fixed points are universal.
Example: Feigenbaum's universal constant $\delta=4.669 \ldots$ is the biggest eigenvalue of the previous operator.

Beyond fixed points, a more global picture is conjectured (Lanford's programme) for several renormalization operators, and proved for a few: there is an invariant compact set, a Cantor or a Solenoid, on which the operator is hyperbolic.

That is enough generalities for this talk

The big picture

Heuristics: renormalization fixed points are universal.

Example: Feigenbaum's universal constant $\delta=4.669 \ldots$ is the biggest eigenvalue of the previous operator.

Beyond fixed points, a more global picture is conjectured (Lanford's programme) for several renormalization operators, and proved for a few: there is an invariant compact set, a Cantor or a Solenoid, on which the operator is hyperbolic.

That is enough generalities for this talk...

Definition of the parabolic renormalization

Start from an analytic map fixing 0 with multiplier 1 :

$$
f(z)=z+a_{2} z^{2}+\ldots
$$

Assume $a_{2} \neq 0$, i.e. there is only one repelling and one attracting petal in a Leau flower for the parbolic point at the origin.

To this, are associated Fatou coordinates, $\Phi_{\text {rep }}$ on the repelling petal and $\Phi_{\text {att }}$ on the attracting petal, that conjugate f to the translation T_{1} on "big" domains near infinity. We may assume that the petals are big enough so as to have their image by Φ contain an upper and a lower half plane (otherwise, use the relation $\Phi \circ f=T_{1} \circ \Phi$ to extend Φ).

Definition of the parabolic renormalization

Start from an analytic map fixing 0 with multiplier 1 :

$$
f(z)=z+a_{2} z^{2}+\ldots
$$

Assume $a_{2} \neq 0$, i.e. there is only one repelling and one attracting petal in a Leau flower for the parbolic point at the origin.

Definition of the parabolic renormalization

Start from an analytic map fixing 0 with multiplier 1 :

$$
f(z)=z+a_{2} z^{2}+\ldots
$$

Assume $a_{2} \neq 0$, i.e. there is only one repelling and one attracting petal in a Leau flower for the parbolic point at the origin.

To this, are associated Fatou coordinates, $\Phi_{\text {rep }}$ on the repelling petal and $\Phi_{\text {att }}$ on the attracting petal, that conjugate f to the translation T_{1} on "big" domains near infinity.

Definition of the parabolic renormalization

Start from an analytic map fixing 0 with multiplier 1 :

$$
f(z)=z+a_{2} z^{2}+\ldots
$$

Assume $a_{2} \neq 0$, i.e. there is only one repelling and one attracting petal in a Leau flower for the parbolic point at the origin.

To this, are associated Fatou coordinates, $\Phi_{\text {rep }}$ on the repelling petal and $\Phi_{\text {att }}$ on the attracting petal, that conjugate f to the translation T_{1} on "big" domains near infinity. We may assume that the petals are big enough so as to have their image by Φ contain an upper and a lower half plane (otherwise, use the relation $\Phi \circ f=T_{1} \circ \Phi$ to extend Φ).

The horn map is defined by

$$
h_{\sigma}=T_{\sigma} \circ \Phi_{\text {att }} \circ \Phi_{\text {rep }}^{-1}
$$

rep. Fatou $\xrightarrow{\Phi_{\text {rep }}^{-1}}$ dyn. plane $\xrightarrow{\Phi_{\text {att }}}$ att. Fatou $\xrightarrow{T_{\sigma}}$ back to rep. coords coords Fatou coords where σ is a parameter (the phase), and commutes with T_{1} on its domain of definition, which contains an upper and a lower half plane.

There is a well defined quotient map $h_{\sigma} \bmod \mathbb{Z}$ acting on the cylinder \mathbb{C} / \mathbb{Z}.

Another point of view on the same object

Equivalent definition of the horn map on the cylinder (without

 extending the petals)The quotient of a petal by the equivalence relation $z \sim f(z)$ is isomorphic, via the Fatou coordinates, to the cylinder \mathbb{C} / \mathbb{Z}. This quotient is refferred to as the attracting/repelling cylinder.
Now take a fundamental domain $D_{\text {rep }}$ in the repeling petal. Take a point in the repelling cylinder. Consider the corresponding point w in $D_{\text {rep }}$. Iterate w until it falls in the attracting petal. To such an iterate corresponds a uniquely defined point in the attracting cylinder. Last, use an identification, of the form T_{σ} in Fatou coordinates, to go from the attracting cylinder back to the repelling cylinder.

The map $e^{2 i \pi z}$ induces an isomorphism from \mathbb{C} / \mathbb{Z} to \mathbb{C}^{*}. Conjugating $h_{\sigma} \bmod \mathbb{Z}$ by this map yields an analytic map g_{σ}, defined in a neighborhood of 0 and ∞ and fixing both, with multipliers $\neq 0$. Since $g_{\sigma}=e^{2 i \pi \sigma} g_{0}$, there is a unique value of σ such that $g_{\sigma}^{\prime}(0)=1$. For this σ we get the the parabolic renormalization of f :

$$
\mathcal{R}(f) \stackrel{\text { def }}{=} g_{\sigma}
$$

Note that this puts the emphasis on the upper end of the cylinder. If one prefers the lower end, replace the conjugacy $z \mapsto e^{2 i \pi z}$ by $z \mapsto e^{-2 i \pi z}$. How well-defined is this map? First, recall that Fatou coordinates are unique only up to addition of a constant. Consequence: $\mathcal{R}(f)$ is unique only up to conjugacy by a linear map. Fortunately, conjugating f itself by a linear map does not change g, so we let \mathcal{R} act on the set of maps f taken up to linear conjugacy. One may choose a canonical representative in each class (=normalization). The set of definition of g_{σ} is not clearly well defined either, even if we fix a normalization. To solve that problem, we can work with germs instead of maps.

The map $e^{2 i \pi z}$ induces an isomorphism from \mathbb{C} / \mathbb{Z} to \mathbb{C}^{*}. Conjugating $h_{\sigma} \bmod \mathbb{Z}$ by this map yields an analytic map g_{σ}, defined in a neighborhood of 0 and ∞ and fixing both, with multipliers $\neq 0$. Since $g_{\sigma}=e^{2 i \pi \sigma} g_{0}$, there is a unique value of σ such that $g_{\sigma}^{\prime}(0)=1$. For this σ we get the the parabolic renormalization of f :

$$
\mathcal{R}(f) \stackrel{\text { def }}{=} g_{\sigma}
$$

Note that this puts the emphasis on the upper end of the cylinder. If one prefers the lower end, replace the conjugacy $z \mapsto e^{2 i \pi z}$ by $z \mapsto e^{-2 i \pi z}$.
How well-defined is this map?
First, recall that Fatou coordinates are unique only up to addition of a constant. Consequence: $\mathcal{R}(f)$ is unique only up to conjugacy by a linear map. Fortunately, conjugating f itself by a linear map does not change g, so we let \mathcal{R} act on the set of maps f taken up to linear conjugacy. One may choose a canonical representative in each class (=normalization).
The set of definition of g_{σ} is not clearly well defined either, even if we fix a normalization. To solve that problem, we can work with germs instead of maps.

The map $e^{2 i \pi z}$ induces an isomorphism from \mathbb{C} / \mathbb{Z} to \mathbb{C}^{*}. Conjugating $h_{\sigma} \bmod \mathbb{Z}$ by this map yields an analytic map g_{σ}, defined in a neighborhood of 0 and ∞ and fixing both, with multipliers $\neq 0$. Since $g_{\sigma}=e^{2 i \pi \sigma} g_{0}$, there is a unique value of σ such that $g_{\sigma}^{\prime}(0)=1$. For this σ we get the the parabolic renormalization of f :

$$
\mathcal{R}(f) \stackrel{\text { def }}{=} g_{\sigma}
$$

Note that this puts the emphasis on the upper end of the cylinder. If one prefers the lower end, replace the conjugacy $z \mapsto e^{2 i \pi z}$ by $z \mapsto e^{-2 i \pi z}$.
How well-defined is this map?
First, recall that Fatou coordinates are unique only up to addition of a constant. Consequence:
$\mathcal{R}(f)$ is unique only up to conjugacy by a linear map. Fortunately, conjugating f itself by a
linear map does not change g, so we let \mathcal{R} act on the set of maps f taken up to linear
conjugacy. One may choose a canonical representative in each class (=normalization).
The set of definition of g_{σ} is not clearly well defined either, even if we fix a normalization. To

The map $e^{2 i \pi z}$ induces an isomorphism from \mathbb{C} / \mathbb{Z} to \mathbb{C}^{*}. Conjugating $h_{\sigma} \bmod \mathbb{Z}$ by this map yields an analytic map g_{σ}, defined in a neighborhood of 0 and ∞ and fixing both, with multipliers $\neq 0$. Since $g_{\sigma}=e^{2 i \pi \sigma} g_{0}$, there is a unique value of σ such that $g_{\sigma}^{\prime}(0)=1$. For this σ we get the the parabolic renormalization of f :

$$
\mathcal{R}(f) \stackrel{\text { def }}{=} g_{\sigma}
$$

Note that this puts the emphasis on the upper end of the cylinder. If one prefers the lower end, replace the conjugacy $z \mapsto e^{2 i \pi z}$ by $z \mapsto e^{-2 i \pi z}$.
How well-defined is this map?
First, recall that Fatou coordinates are unique only up to addition of a constant. Consequence: $\mathcal{R}(f)$ is unique only up to conjugacy by a linear map. Fortunately, conjugating f itself by a linear map does not change g, so we let \mathcal{R} act on the set of maps f taken up to linear conjugacy. One may choose a canonical representative in each class (=normalization).

The set of definition of g_{σ} is not clearly well defined either, even if we fix a normalization. To solve that problem, we can work with germs instead of maps.

An invariant class

There is an invariant class which has been known since around 1990 (Shishikura). It consists in all holomorphic functions $f: U \rightarrow \mathbb{C}$ with:

- U is a connected open set
- $0 \in U$ and $f(z)=z+a_{2} z^{2}+\ldots$ with $a_{2} \neq 0$,
- f is a ramified covering from $U \backslash\{0\}$ to \mathbb{C}^{*},
- all critical points have local degree 2,
- there is exactly one critical value.

For instance, the polynomial $z+z^{2}$ belongs to this family.
Let us call C_{0} the set of maps satisfying these conditions and normalized as follows: the critical value is equal to $-1 / 4$ (same as for $z+z^{2}$). Then we consider the (well-defined) renormalization operator

An invariant class

There is an invariant class which has been known since around 1990 (Shishikura). It consists in all holomorphic functions $f: U \rightarrow \mathbb{C}$ with:

- U is a connected open set
- $0 \in U$ and $f(z)=z+a_{2} z^{2}+\ldots$ with $a_{2} \neq 0$,
- f is a ramified covering from $U \backslash\{0\}$ to \mathbb{C}^{*},
- all critical points have local degree 2,
- there is exactly one critical value.

For instance, the polynomial $z+z^{2}$ belongs to this family.
Let us call \mathcal{C}_{0} the set of maps satisfying these conditions and normalized as follows: the critical value is equal to $-1 / 4$ (same as for $z+z^{2}$). Then we consider the (well-defined) renormalization operator

$$
\mathcal{R}: \mathcal{C}_{0} \rightarrow \mathcal{C}_{0}
$$

A common covering structure for their horn maps

This $\mathcal{R}: \mathcal{C}_{0} \rightarrow \mathcal{C}_{0}$ is not surjective.
Its image is a class \mathcal{C}_{1} with the following property: any two maps $f_{1}, f_{2} \in \mathcal{C}_{1}$ are equivalent covers over \mathbb{C}, i.e. $\exists \phi$ an isomorphism between their sets of definition such that $f_{2}=f_{1} \circ \phi$.
Why? Because for all map in \mathcal{C}_{0}, the immediate parabolic basin U contains exactly one critical point and moreover, f is conjugated on U to a universal map: the degree 2 Blachke product $\frac{3 z^{2}+1}{3+z^{2}}$ on \mathbb{D}.

Let's look at my preferred member of \mathcal{C}_{1}, namely $\mathcal{R}\left(z+z^{2}\right), \quad->$

A common covering structure for their horn maps

This $\mathcal{R}: \mathcal{C}_{0} \rightarrow \mathcal{C}_{0}$ is not surjective.
Its image is a class \mathcal{C}_{1} with the following property: any two maps $f_{1}, f_{2} \in \mathcal{C}_{1}$ are equivalent covers over \mathbb{C}, i.e. $\exists \phi$ an isomorphism between their sets of definition such that $f_{2}=f_{1} \circ \phi$.
Why? Because for all map in \mathcal{C}_{0}, the immediate parabolic basin U contains exactly one critical point and moreover, f is conjugated on U to a universal map: the degree 2 Blachke product $\frac{3 z^{2}+1}{3+z^{2}}$ on \mathbb{D}.

Let's look at my preferred member of \mathcal{C}_{1}, namely $\mathcal{R}\left(z+z^{2}\right) . \square$

$\Phi_{-}: \stackrel{\circ}{K} \rightarrow \mathbb{C}$ attracting Fatou coordinates, extended
$\Psi_{+}: \mathbb{C} \rightarrow \mathbb{C}$ repelling Fatou parameterization, extended

$\Phi_{-}: \stackrel{\circ}{K} \rightarrow \mathbb{C}$ attracting Fatou coordinates, extended
$\Psi_{+}: \mathbb{C} \rightarrow \mathbb{C}$ repelling Fatou parameterization, extended

$\Phi_{-}: \stackrel{\circ}{K} \rightarrow \mathbb{C}$ attracting Fatou coordinates, extended
$\Psi_{+}: \mathbb{C} \rightarrow \mathbb{C}$ repelling Fatou parameterization, extended

$\Phi_{-}: \stackrel{\circ}{K} \rightarrow \mathbb{C}$ attracting Fatou coordinates, extended
$\Psi_{+}: \mathbb{C} \rightarrow \mathbb{C}$ repelling Fatou parameterization, extended

$\Phi_{-}: \stackrel{\circ}{K} \rightarrow \mathbb{C}$ attracting Fatou coordinates, extended
$\Psi_{+}: \mathbb{C} \rightarrow \mathbb{C}$ repelling Fatou parameterization, extended

$\Phi_{-}: \stackrel{\circ}{K} \rightarrow \mathbb{C}$ attracting Fatou coordinates, extended
$\Psi_{+}: \mathbb{C} \rightarrow \mathbb{C}$ repelling Fatou parameterization, extended

Introducing some flexibility

The class \mathcal{C}_{1} is of the form

$$
\mathcal{C}_{1}=\left\{\begin{array}{l|l}
f_{0} \circ \phi^{-1} & \begin{array}{l}
\phi: \operatorname{Def}\left(f_{0}\right) \rightarrow \mathbb{C} \text { is a univalent analytic } \\
\text { map with } \phi(0)=1, \phi^{\prime}(0)=1
\end{array}
\end{array}\right\}
$$

We view this as a ramified covering over \mathbb{C}, with a given "Covering structure", which is a mix of topological data (homotopy) and analytic data (moduli).

Since \mathcal{R} maps \mathcal{C}_{1} to a strict subset of \mathcal{C}_{1}, it is tempting to deduce from this a non-expansion statement, like in Schwarz's lemma; or even better, a strict contraction and the existence of a unique fixed point of \mathcal{R} in \mathcal{C}_{1}.

However, ot is not obvious how to put a complex structure on the space of univalent maps.

The loosened invariant class

Fix f_{0} in \mathcal{C}_{1} and let

$$
\mathcal{C}_{1}(V)=\left\{\begin{array}{l|l}
f_{0} \circ \phi^{-1} & \begin{array}{l}
\phi: V \rightarrow \mathbb{C} \text { is a univalent analytic } \\
\text { map with } \phi(0)=1, \phi^{\prime}(0)=1 \\
\text { and } \phi(V) \text { is a quasidisk }
\end{array}
\end{array}\right\},
$$

Thus " $V^{\prime} \subset V \Longrightarrow \mathcal{C}_{1}(V) \subset \mathcal{C}_{1}\left(V^{\prime}\right)$ ".
Theorem (Inou, Shishikura): There exists some $\varepsilon>0$ such that: for the domain V corresponding to what was illustrated in the previous slide and for some domain $V^{\prime} \subset \subset V$, one can still define a parabolic renormalization \mathcal{R} (which agrees with the previously defined \mathcal{R} at the level of germs) such that $\mathcal{R}\left(C_{1}\left(V^{\prime}\right)\right) \subset \mathcal{C}_{1}(V)$,

In particular $\mathcal{R}\left(\mathcal{C}_{1}\left(V^{\prime}\right)\right) \subset \mathcal{C}_{1}\left(V^{\prime}\right)$
The benefits of leaving some flexibility are manifold:

- Contraction can be proved (c.f. Inou and Shishikura, using the Teichmüller distance between quasidisks).
- Perturbations can be done, easily.

The loosened invariant class

Fix f_{0} in \mathcal{C}_{1} and let

$$
\mathcal{C}_{1}(V)=\left\{\begin{array}{l|l}
f_{0} \circ \phi^{-1} & \begin{array}{l}
\phi: V \rightarrow \mathbb{C} \text { is a univalent analytic } \\
\text { map with } \phi(0)=1, \phi^{\prime}(0)=1 \\
\text { and } \phi(V) \text { is a quasidisk }
\end{array}
\end{array}\right\},
$$

Thus＂$V^{\prime} \subset V \Longrightarrow \mathcal{C}_{1}(V) \subset \mathcal{C}_{1}\left(V^{\prime}\right)$＂．
Theorem（Inou 稲生，Shishikura 宍倉）：There exists some $\varepsilon>0$ such that：for the domain V corresponding to what was illustrated in the previous slide and for some domain $V^{\prime} \subset \subset V$ ，one can still define a parabolic renormalization \mathcal{R}（which agrees with the previously defined \mathcal{R} at the level of germs）such that $\mathcal{R}\left(\mathcal{C}_{1}\left(V^{\prime}\right)\right) \subset \mathcal{C}_{1}(V)$ ．
In particular $\mathcal{R}\left(\mathcal{C}_{1}\left(V^{\prime}\right)\right) \subset \mathcal{C}_{1}\left(V^{\prime}\right)$ ．
The benefits of leaving some flexibility are manifold：
－Contraction can be proved（c．f．Inou and Shishikura，using the Teichmüller distance between quasidisks）．
－Perturbations can be done，easily．

Perturbations

Shorthand： $\mathcal{C}_{2} \stackrel{\text { def }}{=} \mathcal{C}_{1}\left(V^{\prime}\right)$ ．
Theorem（稲生，宾倉）：If $f=e^{2 i \pi \alpha} g$ with $g \in \mathcal{C}_{2}$ then one can define a （cylinder／near－parabolic）renormalization of $f, \mathcal{R}(f)$ which still belongs to \mathcal{C}_{2} provided $\left.\alpha \in\right] 0, \varepsilon[$ ，and corresponds to（sort of）a return map．
Since the set of univalent maps is compact，ε can be taken independent of $g(\varepsilon=1 / 23$ seems to work，c．f．numerical experiments by Inou）．

The renormalization picture

Note that if

$$
f=e^{2 i \pi \alpha} g
$$

with $\alpha \in] 0, \varepsilon$ [and $g \in \mathcal{C}_{2}$ then

$$
\mathcal{R}(f)=e^{2 i \pi \beta} h
$$

with $h \in \mathcal{C}_{2}$ and

$$
\beta=\frac{-1}{\alpha} \bmod \mathbb{Z}
$$

