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Introduction

Lemma: A rational map with a simply connected periodic Fatou
component is conjugated there to a Blaschke product on D with J = ∂D.
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Universality

Lemma: A rational map with a simply connected periodic Fatou
component is conjugated there to a Blaschke product on D with J = ∂D.

Consequence: The dynamics on simply connected immediate parabolic
basins containing only one critical value is unique.

. . . because . . .

by Riemann-Hurwitz there must be only one critical point and, up to
Möbius conjugacy, there is only one unicritical Blaschke product of degree
d with J = ∂D and having a parabolic point:

B(z) =
zd + ad

1 + adzd
, ad =

d − 1

d + 1
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Fatou coordinates

In particular, for a fixed d , they all have the same Fatou coordinates: if U
is the immediate basin of a petal, p its period, φ : U → D an isomorphism
conjugating f p on U to B on D then

Fatouattr[f ] = Fatouattr[B] ◦ φ

where Fatou = Fatouattr[f ] : U → C denotes the extended attracting
Fatou coordinates associated to f p on U: Fatou ◦f = T1 ◦ Fatou where
T1(z) = z + 1.
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The parabolic che[ss/cker]board

A nice way to visualize the extended Fatou coordinates is to make use of
the parabolic graph and chessboard.

P

P3

Fatou

Extended attracting Fatou coordinates have nice covering properties.
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Universality, in pictures

Fatou[B]

Fatou[P3]
Riemann map

C
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Universality, in pictures

d = 3
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Universality, in pictures

one asymptotic value
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The Fatou coords of the Blaschke prod
More eye candy
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The horn map

I just hope extended horn maps have already been defined at this point of
the workshop. . .
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The horn map

Maybe I’m going too far
with candy
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The horn map
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The horn map

Fatourep

A. Chéritat (CNRS, UPS) I.S. near parab. renorm. November 2010 8 / 17



The horn map

Fat−1
rep Fatatt

The extended horn map
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The horn map

horn map
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The horn map

horn map

The cylinder is isomorphic to C∗.
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The horn map

The cylinder is isomorphic to C∗.

horn map

0 av

1
cv

∞ av

0

∞Movie!
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The horn map

horn map

0 av

1
cv

∞ av

0

∞Movie!

The horn map is a finite type map in
the sense of Epstein over Ĉ: it has
only 3 singular values. As a cover, it
can be understood with the parabolic
chessboard.
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Parabolic renormalization

The horn maps on C∗ have an analytic extension at 0 and ∞, fixing each.

horn map

0

1

∞

0

∞

They are defined up to pre and post composition by complex
multiplications. We can normalize by taking the unique representative

whose unique critical value is z = 1 and which has derivative one at z = 0.

The restriction to the component containing 0 of this normalized horn
map is called the parabolic renormalization of the map we started with.

A. Chéritat (CNRS, UPS) I.S. near parab. renorm. November 2010 10 / 17



Parabolic renormalization

The horn maps on C∗ have an analytic extension at 0 and ∞, fixing each.

horn map

0

1

∞

0

∞

They are defined up to pre and post composition by complex
multiplications. We can normalize by taking the unique representative

whose unique critical value is z = 1 and which has derivative one at z = 0.

The restriction to the component containing 0 of this normalized horn
map is called the parabolic renormalization of the map we started with.
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Universality

Universality for unisingular simply connected parabolic basins: conjugacy

=⇒
a universality for horn maps: cover equivalence.

conformal
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A. Chéritat (CNRS, UPS) I.S. near parab. renorm. November 2010 11 / 17



Universality

Universality for unisingular simply connected parabolic basins: conjugacy
=⇒

a universality for horn maps: cover equivalence.

conformal
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Renormalizing the renormalized

It may at first look odd to want to iterate horn maps, but the theory of
parabolic implosion tells us that they really occur as geometric limits.
Horn maps naturally come in simple families hσ(z) = e2iπσh0(z). This
family also undergoes parabolic implosions, so if a horn map has a
parabolic periodic point, the horn maps of these points will also tell us
something about the geometric limits of the initial family.

The renormalized map (we really should find something easier to
pronounce), call it R(f ), is parabolic at the origin. As a consequence of its
covering properties, Shishikura proved that it has only one petal, that its
basins of attraction U contains the critical value and is simply connected
and h is proper of degree 2 from U to U.
Therefore. . . (drumroll). . . It is also conjugated to the Blaschke product!
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A. Chéritat (CNRS, UPS) I.S. near parab. renorm. November 2010 12 / 17



Shishikura’s invariant class
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A. Chéritat (CNRS, UPS) I.S. near parab. renorm. November 2010 13 / 17



Shishikura’s invariant class
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Shishikura’s invariant class

Shishikura’s invariant class has the following form: S =
{
h[B] ◦ φ−1

}
with

φ ∈ Schlicht. Then R : S → S. There is a high chance that R is
contracting on S, but it is not so easy to prove because S is not a
complex (Banach) variety.
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Inou and Shishikura’s flexible invariant
class
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Inou and Shishikura’s flexible invariant
class

U[B]

IS =
{
f = h[B]◦φ−1

}
where φ is now uni-

valent on a cutout U[B] (which is indepen-
dent of f ) and still satisfies φ(z) = z+h.o.t..

They proved that there ∀f ∈ IS, it has a
horn map which has a restriction of the form
h[B]◦ψ−1 where ψ(z) = z+h.o.t. but which
is defined and univalent on a set V [B] that
is strictly bigger than the cutout U[B] in the
sense that U[B] b V [B].
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Use

Gain:

contraction

perturbability: there is still some renormalization even when the
multiplier at 0 is not exactly 1.

powerful understanding of the post critical set of some quadratic maps

positive measure Julia sets

Trade-off: since it is a perturbation argument one has to restrict to small
rotation numbers that stay small when renormalized, i.e. all entries in the
continued fraction need to be > some universal N.
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An attempt at flexibilizing for higher
degree

Do you see all this structure that was left away?

The contraction implies that we magically re-
cover it.

However, maybe if we started directly from
more, it would be easier?
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Strategy

Two steps:

1. For f ∈ S (i.e. with the full structure), denote by B[f ](d) the
hyperbolic disk of center 0 and radius d in the set of definition of f . Prove
that there exists a function D(d) with D � d as d −→ +∞ all map
f ∈ S, then the image by the extended repelling Fatou coordinate of
B[R(f )](d) is contained in B[f ](D).

2. Use a specific perturbation to deduce from this that for some d (big
enough), maps with structure corresponding to the hyperbolic disk of
radius d are stable by renormalization. The perturbation consists in
starting from a map with this reduced structure, and then continuously
deform it into a map having the full structure, keeping the set of definition
of f unchanged but “feeding in” back the structure missing. The hope is,
since D << d , the map f will almost not change at points of B[f ](D).
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