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Introduction, 1/3

Theorem (Arnol’d)

For all diophantine θ, all analytic diffeomorphism f of R/Z with rotation
number θ and close enough to the rotation x 7→ x + θ are analytically
linearizable.

The rotation numbers for which this holds have been subsequently
characterized by Yoccoz and Perez-Marco : these are the Brjuno numbers.

Theorem (Herman)

For all dipohantine θ, the hypothesis “close enough to the rotation” is
superfluous.

Yoccoz characterized the set H of rotation numbers for which all analytic
diffeomorphisms are analytically linearizable. He called them Herman
numbers.
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Introduction, 2/3

Theorem (Ghys)

If P is a polynomial with a Siegel disk ∆ with rotation number in H and if
∂∆ is a Jordan curve then ∂∆ contains a critical point.

Generalized as follows :

Theorem (Herman)

Let f be holomorphic on Ω. If it has a rotation domain U with rotation
number in H and if U has a boundary component X compactly contained
in Ω, then f is not injective in any neighborhood of X .

Note : f is injective in no neighborhood of X ⇐⇒ (f has a critical point
on X ) or (the restriction of f to X is non-injective).
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Introduction, 3/3

Theorem (Herman)

If P is a unicritical polynomial (zd + v) and if ∆ is a Siegel disk with
rotation number in H then the critical point is on the boundary of ∆.

However it is not know whether the restriction of f to ∂∆ is injective or
not.

Proof : Let ∆̂ be the “filled-in” of ∆. Let c be the critical point and v the
critical value. 3 cases :

1 v /∈ ∆̂ then f is injective on ∂∆ : contradiction with θ ∈ H.

2 v ∈ ∆̂ \ ∂∆ : contradiction with a theorem of Fatou : ∂∆ ⊂ ω(c) +
hidden components are Fatou components + classification of Fatou
components/Sullivan

3 v ∈ ∂∆.
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Theorem

Theorem (C, R)

If P is a polynomial with two critical points and if ∆ is a Siegel disk with
rotation number in H then at least one of the critical points is on the
boundary of ∆.

Proof : Let ∆̃ be the component of P−1(∆̂) containing ∆̂. Let n0 be the
number of critical points in ∆̃. Let U be a simply connected neighborhood
of ∆̂ and denote V the connected component of P−1(∆) that contains ∆̃.
If U is sufficiently small then P : V → U is a ramified cover with n0

critical points. 3 cases :

1 n0 = 0 : then P is injective on ∂∆.

2 n0 = 2 : we conclude as in the unicritical case, but using Mañé’s
theorem : there exists a recurrent critical point c such that
∂∆ ⊂ ω(c).

3 n0 = 1 : the new case.
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Proof

Case n0 = 1. Sketch of the proof :

Assume by contradiction that there is no critical point on ∂∆.

(A) Prove that ∆̃ = ∆̂, i.e. that ∆̂ is locally totally invariant.

Conjugate P by the conformal map from the complement of ∆̂ to the
complement of D in C.

Obtain par Schwarz reflection a local diffeomorphism and analytic
cover from S1 to S1 : φ.

(B) Use another theorem of Mañé to show that φ is expanding.

This means that P is a polynomial-like map in a neighborhood of ∆̂.

So we are in the already solved unicritical case, which yields a
contradiction.
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Local invariance of ∆̂

The bounded connected components of C \∆ are Fatou components.
These components are preperiodic. The Kiwi, Poirier, Goldberg-Milnor
separation theorem implies that these components eventually fall in ∆.

The ramified cover P : V → U is equivalent to z 7→ zd with d > 1.

Recall that we are assuming, by contradiction, that there is no critical
point on ∂∆. Therefore v /∈ ∂∆ (it has only one preimage in ∆̃ and at
least one on ∂∆). Thus v is in a component hidden by ∆.
The forward iterates of this components are also hidden, and eventually
fall in ∆. Just before, it is one of the components of P(−1)(∆) : ∆ hides a
component of P(−1)(∆).
By symmetry (the automorphism group of the cover) and a little bit of
topology (if d ≥ 3 and not a prime number), we conclude that all
components of V ∩ P(−1)(∆) hide each other (like Wada lakes).
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