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(Yet) Another sphere eversion
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Movie

Link to a movie showing a sphere eversion.

Meshes computed by a C++ program by the author, and rendered by Jos
Leys using PovRay.
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Quick reminder
Embedding vs. immersion

This smooth closed loop is
embedded in the plane

This smooth closed loop is
immersed in the plane
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Beginning of the story

In the late 50’s, Smale proved a theorem that has the following
consequence:

Smale (195X): The space I of smooth immersions from S2 → R3 is
connected.

Striking corollary: There exists a path in I starting from the canonical
embedding and ending at the antipodal embedding.

In other words: you can turn the sphere inside out provided you allow for
self-intersection. In the process the sphere remains smoothly immersed.

In fact, there is no contradiction: id |S2 and − id |S2 have the same Gauss
map.
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Explicit eversions

Smale’s theorem proved the existence of a path but did not give an explicit
one. Since, many people have described several ways to perform sphere
eversions:

• Arnold Shapiro, 1960, unpublished −→ Later explained by Francis
and Morin circa 1979

• Athony Phillips, 1966, using the Boy surface double cover as a central
configuration. Described by sections, Scientific American

• Bryce De Witt, 1968, N/A

• Bernard Morin, 1966?, −→ Pugh (chickenwire models 1970) −→
Movie by Nelson Max 1977, drawings by J.P. Petit in Pour la Science,
1979

• More on next page!
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Explicit eversions

• New proof of Smale’s theorem by Thurston, 1974 −→ movie by the
Geometry Center, 1994

• Derek Hacon, 19XX, unpublished, personnal communication by his
son

• Sullivan, 1995, min-max approach −→ Movie Optiverse by Sullivan,
Rob Kusner, Ken Brakke, George Francis, and Stuart Levy, 1998

• Eric de Neve, 1996 −→ movie by Chris Hills, 2015 (work in progress)

• Ian Atchison, arxiv 2010, close to Shapiro’s idea but simpler −→
(partial) movie Holiverse

This list is probably not exhaustive.
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Immersed loops in the plane

Given an immersion γ : S1 → R2, denote by W (γ) the winding number
around 0 of the tangent vector as you follow the curve: W (γ) ∈ Z.

Examples:

n 0 1 4

Arnaud Chéritat (CNRS, IMB) Another sphere eversion Aug. 21st 2015 8 / 25



Immersed loops in the plane

Given an immersion γ : S1 → R2, denote by W (γ) the winding number
around 0 of the tangent vector as you follow the curve: W (γ) ∈ Z.

Examples:

n

0 1 4
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Immersed loops in the plane
Whitney-Graustein theorem

Let I denote the set of immersions S1 → R2 and write γ1 ∼ γ2 if there is
a path from γ1 to γ2 within I. This is called a regular homotopy.

W is invariant by deformation: γ1 ∼ γ2 =⇒ W (γ1) = W (γ2).

Theorem (Whitney-Graustein)

(case n 6= 0) W (γ1) = W (γ2) = n =⇒ γ1 ∼ γ2

In other words, the following set is connected: In = the set of immersions
γ : S1 → R2 such that W (γ) = n.

This is also the case for n = 0, but has been proved by someone else
(Michor?).
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Arnaud Chéritat (CNRS, IMB) Another sphere eversion Aug. 21st 2015 9 / 25



Immersed loops in the plane
Whitney-Graustein theorem

Let I denote the set of immersions S1 → R2 and write γ1 ∼ γ2 if there is
a path from γ1 to γ2 within I. This is called a regular homotopy.

W is invariant by deformation: γ1 ∼ γ2 =⇒ W (γ1) = W (γ2).

Theorem (Whitney-Graustein)

(case n 6= 0) W (γ1) = W (γ2) = n =⇒ γ1 ∼ γ2

In other words, the following set is connected: In = the set of immersions
γ : S1 → R2 such that W (γ) = n.

This is also the case for n = 0, but has been proved by someone else
(Michor?).
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Proof
of the Whitney-Graustein Theorem

Recall W (γ0) = W (γ1) = n 6= 0.

Identify R2 ' C and S1 ' [0, 1]/(0 ∼ 1).

For γ ∈ In decompose its derivative γ′ in polar coordinates :
γ′(s) = r(s)e iθ(s) with r , θ : [0, 1]→ R continuous. Then

r(1) = r(0),

θ(1) = θ(0) + 2πn.
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Proof
of the Whitney-Graustein Theorem

We only explain the case when the speed of both curves is constant and
equal to 1: r(s) = 1.

Let γ′0(s) = e iθ0(s) and γ′1(s) = e iθ1(s) and define

θt(s) = (1− t)θ0(s) + tθ1(s),

γt(0) = (1− t)γ0(0) + tγ1(0),

γ′t(s) = e iθt(s).

Then γ′t(0) = γ′t(1).

Problem!

For t 6= 0 or 1, there is no reason for γt to be a closed loop: typically
γt(0) 6= γt(1).
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Proof
of the Whitney-Graustein Theorem

If we choose γ′t(s) = e iθt(s) then γt does not (necessarily) loop.

Solution!

Let instead γ′t(s) = e iθt(s) − at for some well chosen constant at ∈ C.

One computes at =
∫ 1

0 e iθt(s)ds. So |at | ≤ 1. Equality |at | = 1 occurs only
when θt(s) is independent of s. If n 6= 0 this cannot happen so |at | < 1.
Therefore γ′t(s) 6= 0 hence the curve γt remains immersed for all t.

Q.E.D.

In the case of non-constant speed, we can either adapt the formula with a
non-constant s 7→ at(s) or reduce the problem to the case of constant
speed.
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Improvement

Recall: In is the set of immersions γ : S1 → R2 with W (γ) = n.

Let I ′n be the set of γ ∈ In such that arg γ′(0) = 0.

Theorem (whom?)

For all n 6= 0, I ′n is contractible (in a strong sense) and In deformation
retracts to a subset∗ homeomorphic S1.

*: The set of curves that follow the unit circle n times at constant speed.
It is paremeterized by the starting point in S1.

Proof: Fix any γ∗ ∈ In. The explicit Whitney-Graustein formula that
interpolates between γ and γ∗ depends continuously (smoothly!) on γ. �

Case n = 0: I ′0 is also contractible; I0 does not retract on a circle;
Kodama and Michor determined the homotopy groups of I0.
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+1D
slicing

For any embedding or immersion S2 → R3 we may try to understand it by
considering the slice by a horizontal plane and vary the height z of the
plane. Generically we get a finite collection of immersed curves, that
changes as z changes.

These curves will likely undergo bifurcations when the plane crosses points
of the immersed surface where the tangent plane is horizontal.
There is at least two such points: for the max and min heights.

link to video showing an example
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+1D
slicing

Let IT denote the set of immersions S2 → R3 such that the tangent plane
is horizontal only at two points. We call them transverse in this talk.

Then for all intermediate height, the intersection with a horizontal plane is
a single immersed smooth curve, with W = ±1, that varies continuously
with z . It can be parameterized as a continuous path in I1.

For practical reasons, we work with the following variant: IH is the set of
immersions S2 ⊂ R3 → R3 that preserve the height coordinate z .

Note : IH ⊂ IT . Up to a reparameterization, elements of IH correspond
to the maps in IT for which the height function is Morse.
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+1D
slicing

Recall: IT denote the set of immersions S2 → R3 such that the tangent
plane is horizontal only at two points
and IH is the set of immersions S2 ⊂ R3 → R3 that preserve the height
coordinate z .

Proposition

The spaces IH and IT are connected.

Proof: (technicalities under the rug) for IH , apply a WG -contraction in
In (n = ±1) with limit=the circle, all layers at the same time. This
implies the result for IT . �

In other words, this proves that you can untie any transversally immersed
S2; moreover this gives an explicit way of doing it, easily programmable.
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Arnaud Chéritat (CNRS, IMB) Another sphere eversion Aug. 21st 2015 16 / 25



+1D
slicing

Recall: IT denote the set of immersions S2 → R3 such that the tangent
plane is horizontal only at two points
and IH is the set of immersions S2 ⊂ R3 → R3 that preserve the height
coordinate z .

Proposition

The spaces IH and IT are connected.

Proof: (technicalities under the rug) for IH , apply a WG -contraction in
In (n = ±1) with limit=the circle, all layers at the same time. This
implies the result for IT . �

In other words, this proves that you can untie any transversally immersed
S2; moreover this gives an explicit way of doing it, easily programmable.
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Remark
Orientation

To be noted : in this de-knotting process of transversally immersed
spheres, the caps remain (nearly) unchanged. In particular the color
(orientation) of the final sphere will be the same as the the one we see
looking at the top cap from above.
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Base shape
2D

Link to video:
a segment deforms into an open curve with a pair of loops.

Next slide: the 3D immersed open surface defined by the movie above.
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1
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Key shapes
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Arnaud Chéritat (CNRS, IMB) Another sphere eversion Aug. 21st 2015 20 / 25



Key shapes

Arnaud Chéritat (CNRS, IMB) Another sphere eversion Aug. 21st 2015 20 / 25



Key shapes
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WG WG

isotopy!
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Arnaud Chéritat (CNRS, IMB) Another sphere eversion Aug. 21st 2015 22 / 25



WG WG

isotopy!
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Movie again!
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3D printing
The project
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3D printing!
The objects

Designed by the author, purchased at Shapeways
by Insitut de Mathématiques de Toulouse.
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Work in progress
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