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MAP.
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Abstract. Let f : P1 → P1 be a rational map of degree d. It is well known
that f has d zeros and 2d − 2 critical points counted with multiplicities. In
this note, we explain how those zeros and those critical points are related.

In this note, f : P1 → P1 is a rational map. We denote by {αi}i∈I the set of
zeros of f , and by {ωj}j∈J the set of critical points of f which are not zeros of f
(the sets I and J are finite). Moreover, we denote by ni the multiplicity of αi as a
zero of f and by mj the multiplicity of ωj as a critical point of f . The local degree
of f at αi is ni and the local degree of f at ωj is dj = mj + 1. In particular, when
ωj 6= ∞ and f(ωj) 6= ∞, the point ωj is a zero of f ′ of order mj .

Our goal is to understand the relations that exist between the points αi and the
points ωj .

Proposition 1. Given a finite collection of distinct points αi ∈ P1 with multiplic-
ities ni and ωj ∈ P1 with multiplicities mj, there exists a rational map f vanishing
exactly at the points αi with multiplicities ni and having extra critical points exactly
at the points ωj with multiplicities mj if and only if
(1)

∑
(ni + 1)−∑

mj = 2, and
(2) for any k such that αk ∈ C,

res

( ∏
ωj∈C(z − ωj)mj

∏
αi∈C(z − αi)ni+1

dz, αk

)
= 0.

We will give a geometric interpretation of (2) in the case where αk is a simple
zero of f : working in a coordinate where αk = ∞, the barycentre of the remaining
zeros weighted with their multiplicities is equal to the barycentre of the critical
points of f weighted with their multiplicities (see proposition 2 below).

Proof. The proof is elementary. It is based on the observation that the 1-forms
d(1/f) and

φ =

∏
ωj∈C(z − ωj)mj

∏
αi∈C(z − αi)ni+1

dz

are proportional. The differential equation d(1/f) = φ has a rational solution if
and only if φ is exact, if and only if the residues of φ at all finite poles are equal to
zero.

Lemma 1. Let f be a rational map. Denote by αi its zeros and by ni their multi-
plicities. Denote by ωj the critical points of f which are not multiple zeros of f and
by mj their multiplicities. The zeros of the 1-form d(1/f) are exactly the points ωj

with order mj and its poles are exactly the points αi with order ni + 1.

1991 Mathematics Subject Classification. 30C15.

1



2 X. BUFF

Proof. A singularity of the 1-form d(1/f) = −df/f2 is necessarily a zero or a pole
of f , a zero of f ′, or ∞ (where φ is defined by analytic continuation). Considering
the Laurent series of f at each of those points, one immediately gets the result. ¤

Let us now assume that there exists a rational map f with the required prop-
erties. Lemma 1 shows that the 1-forms φ and d(1/f) have the same poles and
the same zeros in C, with the same multiplicities. Hence, their ratio is a rational
function which does not vanish in C. Thus, φ and d(1/f) are proportional. In
particular, φ has a singularity at ∞ if and only if d(1/f) has a singularity at ∞
and the singularity is of the same kind for both 1-forms. Since the number of poles
minus the number of zeros of any non-zero 1-form on P1 is equal to 2 (the Euler
characteristic of P1), we see that

∑
(ni +1)−∑

mj = 2 which is precisely condition
(1). Besides, since φ is exact, it follows that the residues at all the poles αk vanish
and condition (2) is satisfied.

Conversely, the 1-form φ has poles of order ni +1 at the points αi ∈ C and zeros
of order mj at the points ωj ∈ C. Condition (2) implies that φ is exact, i.e., there
exists a rational map g : P1 → P1 such that φ = dg. Since the number of poles of
φ in P1 minus the number of zeros of φ in P1 is equal to 2, condition (1) implies
that when ∞ is neither a point αi nor a point ωj , it is a regular point of φ, when
∞ = αi0 , it is a pole of φ of order ni0 , and when ∞ = ωj0 , it is a zero of φ of
order mj0 . Finally, φ = d(1/f), with f = 1/g, and lemma 1 shows that the rational
map f = 1/g vanishes exactly at the points αi with multiplicities ni and has extra
critical points exactly at the points ωj with multiplicities mj .

We will now give a geometric interpretation of (2) when αk is a simple zero of
f . Let us first work in a coordinate where ∞ is neither one of the points αi nor a
point ωj . Define

R(z) =

∏
j(z − ωj)mj

∏
i 6=k(z − αi)ni+1

.

Then,

res
( ∏

j(z − ωj)mj

∏
i(z − αi)ni+1

dz, αk

)
= res

(
R(z)

(z − αk)2
dz, αk

)
= R′(αk).

Since R(αk) 6= 0, this residue vanishes if and only if

R′(αk)
R(αk)

=
∑

j

mj

αk − ωj
−

∑

i 6=k

ni + 1
αk − αi

= 0.

Let d be the number of zeros counted with multiplicities, i.e., d =
∑

i ni. The total
number of critical points is 2d − 2 =

∑
j mj +

∑
i(ni − 1) (the critical points of f

are the points ωj and the multiple zeros of f). Then, the above equation can be
rewritten as

1
2d− 2


∑

j

mj

αk − ωj
+

∑

i 6=k

ni − 1
αk − αi


 =

1
d− 1

∑

i6=k

ni

αk − αi
.

This last equality can be interpreted in the following way.

Proposition 2. Assume f is a rational map having a simple zero at ∞. Then, the
barycentre of the remaining zeros weighted with their multiplicities is equal to the
barycentre of the critical points of f weighted with their multiplicities.
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Remark. One can prove this proposition directly. We may write f = P/Q where

P =
d−1∑

k=0

akzk and Q =
d∑

k=0

bkzk

are co-prime polynomials with deg(Q) = deg(P )+1 = d. Without loss of generality,
we may assume that the barycenter of the zeros of f is equal to 0. In other words,
we may assume that P is a centered polynomial, i.e., ad−2 = 0. A simple calculation
shows that

P ′Q−Q′P =
2d−2∑

k=0

ckzk

is a polynomial of degree 2d − 2 and that c2k−1 = 0. Therefore, the barycenter of
the zeros of P ′Q−Q′P , i.e., the barycenter of the critical points of f , is equal to 0.

Let us apply this geometric interpretation in order to re-prove two known results.
The first corollary is related to the Sendov conjecture (see for example [M] and more
particularly section 4). This conjecture asserts that if a polynomial P has all its
roots in the closed unit disk, then, for each zero αi there exists a critical point ω
(possibly a multiple zero) such that |αi − ω| ≤ 1.

Corollary 1. Let P : C → C be a polynomial. Assume the zeros of P are all
contained in the closed unit disk and α0 ∈ S1 is a zero of P . Then, the closed disk
of diameter [0, α0] contains at least one critical point of f .

Proof. Denote by d the degree of P . If α0 is a multiple zero of P , then the
result is trivial. Thus, assume α0 is a simple zero of P . Let us work in the
coordinate Z = α0/(α0 − z). The rational map f : Z 7→ P (α0 − α0/Z) has a
simple zero at Z = ∞ and the remaining zeros are contained in the half-plane
{Z ∈ P1 | <(Z) ≥ 1/2}. Thus the barycentre β of those zeros satisfies <(β) ≥ 1/2.
Moreover, f has a critical point of multiplicity d at Z = 0. Thus, the barycentre
of the d remaining critical points is 2β. Since <(2β) ≥ 1, we see that f has at
least one critical point ω contained in the half plane {Z ∈ P1 | <(Z) ≥ 1}. Then,
α0 − α0/ω is a critical point of P contained in the closed disk of diameter [0, α0].

The second corollary has been proved by Videnskii [V]. Our result provides an
alternate proof.

Corollary 2. Assume f : P1 → P1 is a rational map and ∆ ⊂ P1 is a closed disk
or a closed half-plane containing all the zeros of f . Then, ∆ contains at least one
critical point of f .

Proof. Without loss of generality, we may assume that the zeros are simple and
that at least one zero, let us say α0, is on the boundary of ∆. In a coordinate
where α0 = ∞, ∆ is a closed half-plane. The barycentre of the remaining zeros is
contained in this half-plane. Consequently, the barycentre of the critical points is
contained in ∆. Thus, ∆ contains at least one critical point.

Videnskii also proved that this result is optimal in the sense that there exist
rational maps of arbitrary degrees with simple zeros contained in a disk ∆ but only
one critical point in ∆.
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