
WANDERING FATOU COMPONENT FOR POLYNOMIALS

XAVIER BUFF

Abstract. The filled-in Julia set Kf of a polynomial f : C→ C is the set of

points with bounded orbit under iteration of f . The No Wandering Theorem

proved by Sullivan in the 1980’s asserts that every connected component of
the interior of Kf is eventually periodic. Sullivan’s original proof uses Bel-

trami forms and the straightening of almost complex structures. We present a

proof due to Adam Epstein based on a density theorem of Bers for quadratic
differentials. This density theorem is proved by duality and requires solving

the equation ∂̄ξ = µ when µ ∈ L∞.

We show that this result does not hold for polynomials F : C2 → C2. More
precisely, we show that if

F (z, w) =

(
z + z2 + az3 +

π2

4
w,w − w2

)
with a < 1 sufficiently close to 1, then F admits a wandering Fatou compo-
nent. The proof uses techniques of parabolic implosion for skew products. The

approach was initially suggested by Misha Lyubich and Han Peters.

Part 1. Analytic preliminaries

This part is dedicated to the proof of the following density theorem : on a
compact Riemann surface X, the set of meromorphic quadratic differentials whose
poles are simple and contained in a set B ⊆ X is dense, for the L1-norm, in the
space of integrable quadratic differentials on X which are holomorphic outside B.

We will first introduce the actors: quasiconformal vector fields, Beltrami differ-
entials and quadratic differentials. We will then solve the equation ∂̄ξ = µ when
ξ is a vector field on a Riemann surface X and µ is essentially bounded. We will
finally prove the density result.

1. The actors

1.1. Hyperbolic Riemann surfaces. In this section, X is a Riemann surface.
In applications, X will usually be an open subset of C. The Riemann surface X
is naturally oriented: if z is a local coordinate, then X is locally oriented by the
(1, 1)-form i

2dz ∧ dz̄.

Definition 1. The Riemann surface X is hyperbolic if there is a universal cover
π : D→ X from the unit disk D :=

{
z ∈ C ; |z| < 1

}
to X.

If π : D → X is a universal cover, the deck transformations are Möbius trans-
formations. They preserve the Poincaré metric ρD on the unit disk:

ρD =
2 |dz|

1− |z|2
.
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It follows that the Poincaré metric on D descends to a hyperbolic metric ρX on X
which satisfies

ρX ◦Dπ = ρD.

Definition 2. A vector field ξ on a hyperbolic Riemann surface X is hyperbolically
bounded on X if the function ρX(ξ) : X → [0,+∞) is bounded. We set

‖ξ‖X := sup
X
ρX(ξ).

1.2. Beltrami differentials. A vector field ξ on a Riemann surface X is a section
of the holomorphic bundle TX. When ξ is a smooth vector field, ∂̄ξ is a C-antilinear
bundle map ∂̄ξ : TX → TX: for all (v, w) ∈ TxX × TxX and all λ ∈ C,

∂̄ξ(x;λv + w) = λ̄ · ∂̄ξ(x; v) + ∂̄ξ(x;w).

Definition 3. We denote by Hom(TX,TX) the space of C-antilinear bundle maps.

When µ ∈ Hom(TX,TX), the restriction µx of µ to each fiber TxX is an
endomorphism and since TxX has dimension 1, its operator norm does not depend
on the choice of norm on TxX. We shall denote by |µ|(x) this constant, defining a
function |µ| : X → [0,+∞).

If z is a local coordinate near a point x ∈ X, then we may locally write

µ = µ(z)
∂

∂z
· dz̄ and |µ| =

∣∣µ(z)
∣∣,

for some function µ defined near z(x).

Definition 4. A Beltrami differential µ on a Riemann surface X is a measurable
element of Hom(TX,TX) which satisfies:

‖µ‖L∞(X) := sup
X
|µ| < +∞.

We denote by bel(X) the space of Beltrami differentials on X.

1.3. Quadratic differentials.

Definition 5. A quadratic differential q on a Riemann surface X is a field of
quadratic forms, i.e. a section of the symmetric square S2(T∗X) of the cotangent
bundle. We denote by Q(X) the space of measurable quadratic differentials on X.

If q is a quadratic differential on X, then q(x) is a quadratic form on TxX.
With an abuse of notation, we shall write q(x; v) for q(x)(v), and thus, consider q
as a map TX → C which satisfies

q(x;λv) = λ2q(x; v) for all (x; v) ∈ TX and all λ ∈ C.

If z is a local coordinate near a point x ∈ X, then we may locally write

q = q(z) dz ⊗ dz

for some function q defined near z(x). For simplicity, we will write dz2 in place of
dz ⊗ dz, not to be confused with d(z2).

Definition 6. The polar form b of the quadratic differential q is the field of sym-
metric and bilinear forms defined by

b(x; v, w) :=
1

4
q(x; v + w)− 1

4
q(x; v − w).
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Definition 7. If q is a quadratic differential on X, we denote by |q| the positive
(1, 1)-form on X which takes the value

∣∣q(x; v)
∣∣ on the the pair (v, iv).

For x ∈ X and (v, w) ∈ TxX × TxX,

|q|(x; v, w) :=
1

2

∣∣q(x; v − iw)
∣∣− 1

2

∣∣q(x; v + iw)
∣∣.

If z is a local coordinate and q = q(z) dz2, then

|q| = |q(z)| · i

2
dz ∧ dz̄.

Definition 8. A quadratic differential q is integrable on X if

‖q‖L1(X) :=

∫
X

|q| < +∞.

Definition 9. We denote by

• Q(X) the space of measurable quadratic differentials on X
• Q1(X) ⊂ Q(X) the subspace of integrable quadratic differentials;
• Qhol(X) ⊂ Q(X) the subspace of holomorphic quadratic differentials;
• Q1

hol(X) := Qhol(X) ∩Q1(X).

If X is a compact Riemann surface and B ⊆ X, we denote by

• Q1
mero(X) the space of meromorphic quadratic differentials on X which have

at worst simple poles and
• Q1

mero(X;B) ⊆ Q1
mero(X) the subspace of quadratic differentials whose poles

are contained in B.

Proposition 1. If X is a compact Riemann surface and B ⊂ X is a finite set,
then Q1

hol(XrB) = Q1
mero(X;B).

Proof. Assume q ∈ Q1
hol(XrB). By definition, q is holomorphic on XrB. We

must show that the singularity at a point x ∈ B is at worst a simple pole and that
a simple pole is integrable. Choose a local coordinate z : (X,x)→ (C, 0) and write

q = q(z) dz2

for some function q which is holomorphic near 0 in C.
If q has a simple pole at 0, then there is a constant C such that∫

|z|<ε

∣∣q(z)∣∣|dz2| ≤
∫
|z|<ε

C

|z|
|dz2| ≤

∫ 2π

0

(∫ ε

0

C

r
rdr

)
dθ = 2πεC.

Thus, q is integrable near x.
Let us now prove that when q is integrable, it has at worst a simple pole. Con-

sider the Laurent series

q(z) =
∑
k∈Z

qkz
k with qk =

1

2πi

∫
|z|=r

q(z)

zk+1
dz for r ∈ (0, 1).

Writing z = re2πit yields

|qk| =

∣∣∣∣∣
∫
t∈(0,1)

q
(
re2πit

)
rke2πikt

dt

∣∣∣∣∣ ≤ 1

rk

∫
t∈(0,1)

∣∣q(re2πit
)
|dt.

As a consequence,

‖q‖L1(X) ≥
∫

(r,t)∈(0,ε)×(0,1)

∣∣q(re2πit
)
| rdrdt ≥ |qk|

∫
r∈(0,ε)

rk+1dr.
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It follows that qk = 0 for k ≤ −2 and so, q has at worst a simple pole at 0. �

The ratio of any two holomorphic quadratic differentials is a meromorphic func-
tion. On a compact Riemann surface, a meromorphic function has as many zeros as
poles, counting multiplicities. On a genus g compact Riemann surface, the number
of zeros minus the number of poles of a 1-form is 2g−2. It follows that the number
of zeros minus the number of poles of a meromorphic quadratic differential is 4g−4.
In particular, on the Riemann sphere for which g = 0, the number of poles minus
the number of zeros of a non zero meromorphic quadratic differential is equal to 4.
As a consequence, if X is a thrice-punctured sphere, then Q1

hol(X) = {0}.
It is natural to pull back quadratic differentials: if f : X → Y is a holomor-

phic map and q is a quadratic differential on Y , then we can define a quadratic
differential f∗q on X by

f∗q := q ◦Df.

In appropriate situations, we can also push forward quadratic differentials.

Proposition 2. If f : X → Y is a covering of Riemann surfaces and q ∈ Q1
hol(X),

the following series converges and defines a quadratic differential f∗q ∈ Q1
hol(Y ):

f∗q :=
∑

gi inverse
branch of f

g∗i q.

In addition,

‖f∗q‖L1(Y ) ≤ ‖q‖L1(X).

Proof. It is enough to show that the series converges in L1(Y ) and this immediately
follows from the triangle inequality. Indeed, if U ⊆ Y is an evenly covered open
set, and gi : U → X are inverse branches of f , then∫

U

∣∣∣∑ g∗i q
∣∣∣ ≤ ∫

U

∑
|g∗i q| =

∫
f−1(U)

|q| ≤ ‖q‖L1(X) < +∞. �

1.4. Quasiconformal vector fields.

Definition 10. A vector field ξ on a Riemann surface X is quasiconformal if ∂̄ξ
is a Beltrami differential.

In this definition, the ∂̄-derivative is taken in the sense of distributions. What
it means is that there is a Beltrami differential µ on X such that for any smooth
quadratic differential q with compact support in X, we have∫

X

∂̄q · ξ = −
∫
X

q · µ.

We need to define what ∂̄q · ξ and q · µ mean. Let us first define q · ξ.

Definition 11. If q is a quadratic differential on X with polar form b, and ξ is a
vector field on X, then q · ξ is the (1, 0)-form defined by

TX 3 (x; v) 7→ 1

2i
b(x; ξ(x), v) ∈ C.

In local coordinates, if

q = q(z) dz2 and ξ = ξ(z)
∂

∂z
,
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then

q · ξ =
1

2i
q(z)ξ(z) dz.

Since q · ξ is a (1, 0)-form, its derivative ∂̄(q · ξ) is a (1, 1)-form and we wish to
have the equality

∂̄(q · ξ) = ∂̄q · ξ + q · ∂̄ξ
which corresponds, in a local coordinate z, to

∂̄

(
q(z)ξ(z) · 1

2i
dz

)
=

(
∂q(z)

∂z̄
ξ(z) + q(z)

∂ξ(z)

∂z̄

)
· i

2
dz ∧ dz̄.

This yields the following definitions.

Definition 12. If q is a quadratic differential on X with polar form b and if µ is
a Beltrami differential on X, then q · µ is the (1, 1)-form defined on X by

q · µ (x; v, w) =
i

2
b
(
x; v,µ(x;w)

)
− i

2
b
(
x;µ(x; v), w

)
.

If z is a local coordinate, if

q = q(z) dz2 and µ = µ(z)
∂

∂z
· dz̄,

then

q · µ = q(z)µ(z) · i

2
dz ∧ dz̄.

We now define ∂̄q · ξ when q is a smooth quadratic differential. If b is the polar
form of q, then ∂̄b is a C-antilinear bundle map TX → S2(T∗X).

Definition 13. If ξ is a vector field on X and q is a smooth quadratic differential
on X with polar form b, then ∂̄q · ξ is the (1, 1)-form defined on X by

∂̄q · ξ (v, w) =
i

2
∂̄b(v)(ξ, w)− i

2
∂̄b(w)(ξ, v).

If z is a local coordinate, if

q = q(z) dz2 and ξ = ξ(z)
∂

∂z
,

then

∂̄q · ξ =
∂q(z)

∂z̄
ξ(z) · i

2
dz ∧ dz̄.

2. Solving the equation ∂̄ξ = µ

First, observe that the equation ∂̄ξ = µ always has local solutions. Indeed, if z
is a local coordinate sending x ∈ X to 0 ∈ C and if

µ = µ(z)dz̄ · ∂
∂z
,

then we can define

ξ := ξ(z)
∂

∂z
with ξ(z) :=

1

π

∫
|w|<ε

µ(w)

z − w
|dw2|.

Then,

∂ξ

∂z̄
=

{
µ if |z| < ε

0 if |z| ≥ ε.
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So, ∂̄ξ = µ when |z| < ε.
Second, observe that the vector field ξ defined in this way is continuous at x ∈ X.

More precisely,

ξ(z) = ξ(0) + O

(
|z| log

1

|z|

)
as z → 0.

Indeed, ∣∣ξ(z)− ξ(0)
∣∣ ≤ 1

π
· ‖µ‖L∞(Dε) ·

∫
|w|<ε

∣∣∣∣ 1

w − z
− 1

w

∣∣∣∣ |dw2|

=
|z|
π
· ‖µ‖L∞(Dε)

∫
|w|<ε

∣∣∣∣ 1

w(w − z)

∣∣∣∣ |dw2|.

Make the change of variables w = zu with |dw2| = |z|2 · |du2|, to obtain∫
|w|<ε

∣∣∣∣ 1

w(w − z)

∣∣∣∣ |dw2| =
∫
|u|<ε/|z|

∣∣∣∣ 1

u(u− 1)

∣∣∣∣ |du2|

= O

(∫
1<|u|<ε/|z|

1

|u|2
|du2|

)
= O

(
log

1

|z|

)
.

Third, observe that if ζ is another quasiconformal vector field with ∂̄ζ = ∂̄ξ = µ,
then the difference ζ − ξ is a holomorphic vector field, so that ζ is also continuous
at x and

ζ = ζ(z)
∂

∂z
with ζ(z) = ζ(0) + O

(
|z| log

1

|z|

)
as z → 0.

We just proved the following result.

Lemma 1. If ξ is a quasiconformal vector field on a Riemann surface X, then ξ
is continuous. More precisely, if z is a local coordinate sending x ∈ X to 0 ∈ C and

if ξ = ξ(z)
∂

∂z
then ξ(z) = ξ(0) + O

(
|z| log

1

|z|

)
as z → 0.

The following result states that under appropriate circumstances, the equation
∂̄ξ = µ has a global solution.

Definition 14. A Beltrami differential µ on a Riemann surface X is trivial if

∀q ∈ Q1
hol(X),

∫
X

q · µ = 0.

Proposition 3. Let X be a hyperbolic Riemann surface and µ be a trivial Beltrami
differential on X. Then, there exists a unique hyperbolically bounded quasiconformal
vector field ξ on X such that ∂̄ξ = µ. In addition,

‖ξ‖X ≤ 4‖µ‖L∞(X).

Proof. Let us first prove uniqueness. If ξ and ζ are two hyperbolically bounded
quasiconformal vector fields on X with ∂̄ξ = ∂̄ζ, then the difference ξ − ζ is a
hyperbolically bounded holomorphic vector field on X. Let π : D → X be a
universal cover. Then, π∗(ξ− ζ) is a holomorphic vector field on D, which extends
continuously by 0 on the unit circle. It follows that ξ − ζ = 0.
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Let us now prove the existence of a vector field ξ such that ∂̄ξ = µ. Given a
universal cover π : D→ X, the Beltrami differential π∗µ can be expressed as

π∗µ = µ(z) dz̄ · ∂
∂z

for some function µ ∈ L∞(D). Let ζ be the vector field on C defined by

ζ := ζ(z)
∂

∂z
with ζ(z) :=

1

π

∫
D

µ(w)

z − w
|dw2|.

Since

∂ζ

∂z̄
=

{
µ on D
0 outside D,

ζ is quasiconformal on C, ∂̄ζ = π∗µ on D and ζ is holomorphic outside D. In fact,
if z 6∈ D, then

qz :=
dw2

w − z
∈ Q1

hol(D) so π∗(qz) ∈ Q1
hol(X).

In that case

ζ(z) :=
1

π

∫
D

µ(w)

w − z
|dw2| = 1

π

∫
D

qz · (π∗µ) =
1

π

∫
X

(π∗qz) · µ = 0

since µ is trivial. Thus, ζ vanishes outside D.
Now, if π1 : D → X and π2 : D → X are two universal covers and if π1(z1) =

π2(z2), there is a Möbius transformation γ fixing D and sending z2 to z1 such that
π2 = π1 ◦ γ. Let ζ1 and ζ2 be the corresponding quasiconformal vector fields
defined above. They vanish outside D and satisfy

∂̄ζ1 = π∗1µ and ∂̄ζ2 = π∗2µ = γ∗(π∗1µ) = ∂̄(γ∗ζ1).

It follows that ζ2 − γ∗ζ1 is holomorphic on C, and since both vector fields vanish
outside D, we necessarily have ζ2 = γ∗ζ1. This shows that

Dz2π2

(
ζ2(z2)

)
= Dz1π1

(
ζ1(z1)

)
.

Taking π1 = π2 = π, this shows that ζ descends to a vector field ξ on X such
that ξ = Dπ(ζ). Taking π1 6= π2 shows that ξ does not depend on the choice of
universal cover. Since ∂̄ζ = π∗µ on D, we have ∂̄ξ = µ on X.

We finally prove that ξ is hyperbolically bounded. Given x ∈ X, let π : D→ X
be a universal cover sending 0 to x. By construction

ξ(x) = D0π

(
ζ(0)

∂

∂z

)
with ζ(0) = − 1

π

∫
D

µ(w)

w
|dw2|.

As a consequence,

ρX
(
ξ(x)

)
= ρD

(
ζ(0)

∂

∂w

)
= 2
∣∣ζ(0)

∣∣ ≤ 2‖µ‖L∞(D)

π

∫
D

|dw2|
|w|

= 4‖µ‖L∞(X). �

The next result shows that the converse to Proposition 3 holds.

Proposition 4. Assume ξ is a hyperbolically bounded quasiconformal vector field
on X. Then, ∂̄ξ is a trivial Beltrami differential on X.
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Proof. Fix a point x ∈ X, let δ : X → (0,+∞) be the hyperbolic distance to x.
Assume q ∈ Q1

hol(X). On the one hand, q ·µ is integrable on X and ∂̄q = 0 on X.
On the other hand, {δ = R} is smooth by part, so that, according to the Stokes
Theorem, ∫

{δ=R}
q · ξ =

∫
{δ<R}

∂̄q · ξ +

∫
{δ<R}

q · µ =

∫
{δ<R}

q · µ.

Working in local coordinates with

q = q(z) dz2, ξ = ξ(z)
∂

∂z
and ρX = ρ(z) |dz|,

we have∣∣(q · ξ) ∧ dδ
∣∣ ≤ ∣∣∣∣q(z)ξ(z)ρ(z) · i

2
dz ∧ dz̄

∣∣∣∣ = ρX(ξ) · |q| ≤ ‖ξ‖X · |q|.

Thus, according to Fubini’s theorem,∫ +∞

R=0

∣∣∣∣∣
∫
{δ=R}

q · ξ

∣∣∣∣∣dδ ≤
∫
X

∣∣(q · ξ) ∧ dδ
∣∣ ≤ ‖ξ‖X · ‖q‖L1(X) < +∞.

Since the following limit exists

lim
R→+∞

∫
{δ=R}

q · ξ = lim
R→+∞

∫
{δ<R}

q · µ =

∫
X

q · µ,

it is necessarily 0, thus µ is trivial. �

In fact, a similar argument yields the following result.

Proposition 5. Let Y be a Riemann surface and X ⊂ Y be a hyperbolic Rie-
mann surface. Let ξ be a vector field on Y which vanishes outside X and whose
restriction to X is hyperbolically bounded and quasiconformal. Then, ξ is globally
quasiconformal on Y and ∂̄ξ = 0 outside X.

Proof. Let µ be the Beltrami differential on Y which coincides with ∂̄ξ on X and
vanishes outside X. Let q be a smooth quadratic differential with compact support
in Y . We must prove that ∫

Y

∂̄q · ξ +

∫
Y

q · µ = 0.

Since ξ and µ vanish outside X, this really amounts to proving that∫
X

∂̄q · ξ +

∫
X

q · µ = 0.

As in the previous proof, fix a point x ∈ X, let δ : X → (0,+∞) be the hyperbolic
distance to x. According to the Stokes theorem∫

{δ<R}
∂̄q · ξ +

∫
{δ<R}

q · µ =

∫
{δ=R}

q · ξ.

Letting R tend to +∞, we have∫
{δ<R}

∂̄q · ξ +

∫
{δ<R}

q · µ −→
R→+∞

∫
X

∂̄q · ξ +

∫
X

q · µ.
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And as in the previous proof,∫ +∞

R=0

∣∣∣∣∣
∫
{δ=R}

q · ξ

∣∣∣∣∣dδ ≤ ‖ξ‖X · ‖q‖L1(X) < +∞,

so that the only possible limit is∫
{δ=R}

q · ξ −→
R→+∞

0. �

3. The density theorem

We will now prove the following density result.

Definition 15. If X is a compact Riemann surface and B is a subset of X, we
denote by

• Q1(X;B) ⊆ Q1(X) the space of integrable quadratic differentials on X
which are holomorphic outside B and
• Q1

mero(X;B) ⊆ Q1(X,B) the space of meromorphic quadratic differentials
on X which are holomorphic outside B and have at worst simple poles in
B.

Theorem 1 (Bers-Lakic). Let X be a compact Riemann surface and B be a subset
of X. Then Q1

mero(X;B) is dense in Q1(X,B) for the L1-norm.

Proof. By the Hahn-Banach Theorem, it is enough to prove that any linear form L :
Q1(X)→ C that vanishes on Q1

mero(X;B) also vanishes on Q1(X,B). According to
the Riesz Representation Theorem, there exists a Beltrami differential µ ∈ bel(X)
such that

L(q) =

∫
X

q · µ.

By assumption,

∫
X

q · µ = 0 for all q ∈ Q1
mero(X;B). We need to prove that∫

X

q · µ = 0 for all q ∈ Q1(X;B).

If B is finite, then Q1
mero(X;B) = Q1(X;B) and the result is obvious. So,

without loss of generality, we may assume that B is not finite and we let

B0 ⊂ B1 ⊂ . . . ⊂ Bn ⊂ . . . ⊂ B

be an increasing sequence of finite sets such that XrB0 is hyperbolic. Then,
Xn := XrBn is a hyperbolic Riemann surface and Q1

hol(Xn) ⊂ Q1
mero(X;B). In

particular, µ is a trivial Beltrami differential on Xn.
According to Proposition 3, there exists a unique hyperbolically bounded quasi-

conformal vector field ξn on Xn such that ∂̄ξn = µ on Xn. Note that ξn − ξ0 is
holomorphic on Xn and extends continuously at points in BnrB0, so that ξn − ξ0

is holomorphic on X0 and ∂̄ξn = µ on X0. In addition, Xn ⊂ X0, thus, ρX0
< ρXn

and ξn is hyperbolically bounded on X0. This shows that ξn = ξ0 for all n ≥ 0.
Note that ρXn

tends to ρXrB pointwise on XrB. Since ρXn
(ξ0) is uniformly

bounded by 4‖µ‖L∞(X), ξ0 is hyperbolically bounded on XrB. In addition, ξ0

vanishes at all points in Bn, thus on B by continuity. According to Proposition
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5, ξ0 is globally quasiconformal on X and µ = ∂̄ξ0 vanishes on B. According to
Proposition 4, µ is trivial on XrB. Thus,∫

X

q · µ =

∫
XrB

q · µ = 0. �

Part 2. Holomorphic dynamics

4. Orbits

Discrete dynamics is the study of the long term behavior of sequences (xn)n≥0

defined by induction:

x0 ∈ X and xn+1 = f(xn)

where f : X → X is a map from a set X to itself. Usually, one requires some
regularity. Typically, X is a topological space and f is continuous. We shall use
the notation f◦n to denote the n-th iterate of f .

Definition 16. Given any point x ∈ X, we denote by O+(x) the forward orbit of
x, by O−(x) its backward orbit, and by GO(x) its grand-orbit, i.e. the sets:

O+(x):=
⋃
n≥0

{f◦n(x)} , O−(x):=
⋃
n≥0

f−n{x} and GO(x):=
⋃

y∈O+(x)

O−(y).

Those sets and their closures are the basic objects of study in dynamical sys-
tems. When X is compact, we may consider the ω-limit set ω(x), i.e., the set of
accumulation points of the sequence

(
f◦n(x)

)
:

ω(x) :=
⋂
n≥0

O+
(
f◦n(x)

)
.

This set is compact and invariant: f
(
ω(x)

)
= ω(x).

Holomorphic dynamics deals with the case where X is a complex manifold and
f is holomorphic. From now on, we assume that X = Pk(C) for some k ≥ 1 and
f : X → X is a holomorphic endomorphism. We will mainly focus on the case
where f restricts to a polynomial map f : Ck → Ck.

For some exceptional maps f : X → X, there may be exceptional points x ∈ X
with a finite grand-orbit. In dimension 1, i.e. for rational maps f : P1(C)→ P1(C),
those cases are well understood:

• either there are two points with finite grand orbit
– if the grand orbit are disjoint, up to Möbius change of coordinates, the

map is z 7→ zd with d ≥ 2 and the points are 0 and ∞;
– if the two points are in the same orbit, up to Möbius change of co-

ordinates, the map is z 7→ 1/zd with d ≥ 2 and the points are 0 and
∞;

• or there is a single point with finite grand orbit and up to Möbius change
of coordinates, the map is a polynomial and the point if ∞.

For endomorphisms f : Pk(C) → Pk(C), the set of exceptional points is much less
understood.
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5. Fatou and Julia sets

Definition 17. The Fatou set of f is the largest open set Ff on which the family
of iterates (f◦n) is normal. The Julia set of f is its complement Jf := XrFf .

The Fatou set and the Julia set are completely invariant:

f−1(Jf ) = f(Jf ) = Jf and f−1(Ff ) = f(Ff ) = Ff .
In particular, each component of the Fatou set is mapped to a component of the
Fatou set. A famous result due to Sullivan asserts that in dimension k = 1, every
Fatou component is eventually mapped to a periodic Fatou component. We shall
give a proof of this result due to Adam Epstein and based on the density Theorem
1. We shall also prove that this result is not valid in dimension k > 1.

A particular case is the one of a rational map f : P1(C)→ P1(C) which restricts
to a polynomial f : C→ C. It is rather elementary to check that when the degree
of the polynomial f is at least 2, ω(x) = {∞} for x large enough. In fact, there
is an open set of points x for which ω(x) = {∞} and its complement is called the
filled-in Julia set of f :

Kf :=
{
x0 ∈ C ;

(
f◦n(x)

)
n≥0

is bounded
}
.

It follows from the Maximum modulus principle that C \ Kf is connected. In
particular, the component of the interior of Kf are simply connected. In addition,
the Julia set Jf is the topological boundary of the filled-in Julia set Kf . Indeed,
outside Kf , the sequence (f◦n) converges locally uniformly to∞ and on the interior
of Kf , the sequence (f◦n) is bounded, thus normal.

Kf Jf

Figure 1. Left: the filled-in Julia set of a quadratic polynomial.
It is known as the Douady Rabbit. Right: the Julia set for the
same quadratic polynomial. It is the topological boundary of the
filled-in Julia set.

The Fatou set and the Julia set are completely invariant:

f−1(Jf ) = f(Jf ) = Jf and f−1(Ff ) = f(Ff ) = Ff .
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For rational maps f : P1(C) → P1(C), the following properties of the Julia set
are easily derived from the Montel Theorem which asserts that a family of maps
avoiding three points in P1(C) is normal.

Proposition 6. Assume f : P1(C)→ P1(C) is a rational map. Then, the Julia set
Jf is

• the smallest completely invariant set containing at least three points;
• contained in the closure of the set of periodic points;
• contained in the closure of the backward orbit of any point x ∈ P1(C) which

is not exceptional.

Proof. See [M] for example. �

6. Fatou components

Again, we assume that f : Pk(C)→ Pk(C) is a holomorphic endomorphism.

Definition 18. A Fatou component is a connected component of the Fatou set.

Since the Fatou set is completely invariant, every Fatou component is mapped
to a Fatou component.

Definition 19. A Fatou component U is eventually periodic if there are integers
n1 > n2 ≥ 0 such that f◦n1(U) = f◦n2(U). A wandering Fatou component is a
Fatou component which is not eventually periodic.

In the case of 1-dimensional rational maps f : P1(C) → P1(C), Fatou gave a
classification of periodic Fatou components: every periodic Fatou component is
a (super)attracting basin, a parabolic basin, a Siegel disk or a Herman ring (see
[M] for details). In the 1980’s, Sullivan proved that every Fatou component of a
1-dimensional rational maps f : P1(C) → P1(C) is eventually periodic. The next
section is devoted to this result.

Note that for higher dimensional dynamics, the classification of periodic Fatou
components is still not complete. While working on this classification, Misha Lyu-
bich and Han Peters discovered an approach to proving the existence of holomorphic
endomorphisms f : P2(C) → P2(C) with a wandering Fatou component. Such an
example is presented in Section 9.

7. No wandering Fatou component in dimension 1

This section is devoted to the proof of the following theorem proved by Sullivan
in the more general context of rational maps f : P1(C)→ P1(C). The approach we
present is due to Adam Epstein. We restrict to the case of polynomials f : C→ C
to avoid some technical details.

Theorem 2 (No Wandering Domain). Let f : C → C be a polynomial. Every
Fatou component is eventually periodic.

Proof. The proof goes by contradiction. We assume that U is a wandering Fatou
component, i.e. f◦m(U) 6= f◦n(U) for all integers m > n ≥ 0. If the grand orbit of
a critical point c intersects U , then there are integers m ≥ 0 and n ≥ 0 such that
f◦m(c) ∈ f◦n(U). Replacing U by f◦(n+1)(U) if necessary, we may assume that
c is in an iterated preimage of U so that the forward orbit of U does not contain
c. Since there are finitely many critical points, we may assume that all the critical
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points whose grand orbits intersect U are in iterated preimages of U . In that case,
the forward orbit of U contains no critical point. Since f is a polynomial, U is
simply connected and f◦k : U → f◦k(U) is an isomorphism for all k ≥ 1.

Let Of be the grand orbit of critical points of f . Let U be the grand orbit of U .
The grand orbit of any point z ∈ U intersects U in a single point. In particular, the
map F : U → U which sends a point z ∈ U to the unique point of the grand orbit of
z in U restricts to a covering map F : UrOf → UrOf . Indeed, for each connected
component V of U , there are integers m,n such that f◦m(V ) = f◦n(U) =: W .
Then, f◦n : UrOf → WrOf is an isomorphism, f◦m : VrOf → WrOf is a
covering map, and

F |VrOf
= (f◦n|UrOf

)−1 ◦ f◦m|VrOf
.

Let (Bn)n≥0 be the sequence of finite sets defined recursively by

B0 := U ∩ Of and Bn+1 := f−1(Bn) ∪Bn = f−1(Bn) ∪B0.

The sequence (Bn) is increasing. We set B :=
⋃
n≥0Bn. According to Proposition

6, the Julia set Jf is contained in B, so that UrOf is a connected component of

ĈrB.
Recall that a quadratic differential q belongs to Q1(Ĉ;B) if it is integrable on Ĉ

and holomorphic outside B, in particular on UrOf . Thus, there is a well defined
push forward operator

F∗ : Q1(Ĉ;B)→ Q1
hol(UrOf )

defined by first restricting to UrOf , then pushing forward via the covering map
F : UrOf → UrOf .

Lemma 2. The linear map F∗ : Q1(Ĉ;B) → Q1
hol(UrOf ) is continuous and

surjective.

Proof. Restricting q ∈ Q1(Ĉ;B) to UrOf does not increase the norm, and pushing
forward by the covering map F : UrOf → UrOf does not increase the norm either.

Thus, ‖F∗‖ ≤ 1 and F∗ : Q1(Ĉ;B)→ Q1
hol(UrOf ) is continuous.

Since UrOf is a connected component of ĈrB, any q ∈ Q1
hol(UrOf ) can be

extended by 0 to a quadratic differential q̂ ∈ Q1(Ĉ;B). Then, F∗q̂ = q. This

proves that F∗ : Q1(Ĉ;B)→ Q1
hol(UrOf ) is surjective. �

We will prove that F∗
(
Q1(Ĉ;B)

)
has finite dimension, which yields a contra-

diction since Q1
hol(U) ⊆ Q1

hol(UrOf ) is isomorphic to Q1
hol(D) which has infinite

dimension.

Lemma 3. The dimension of F∗
(
Q1

mero(Ĉ;Bn)
)

is at most card(B0).

Proof. The sequence of sets Bn is increasing. It follows that the sequences of spaces

Q1
mero(Ĉ;Bn) and F∗

(
Q1

mero(Ĉ;Bn)
)

are increasing. Without loss of generality, we
may choose n sufficiently large so that the set Vf of critical values of f is contained

in Bn. Setting An := f−1(Bn), the map f : ĈrAn → ĈrBn is a covering map. It

induces a linear map f∗ : Q1
mero(Ĉ;An)→ Q1

mero(Ĉ;Bn).
The linear map

∇f := id− f∗ : Q1
mero(Ĉ;An)→ Q1

mero(Ĉ;An ∪Bn)
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is injective. Indeed, let ∆ be a disk centered at 0 with sufficiently large radius so

that f−1(∆) b ∆ and observe that for q ∈ Q1
mero(Ĉ;An), we have∫

∆

|f∗q| ≤
∫
f−1(∆)

|q| <
∫

∆

|q|,

so that f∗q 6= q.
By construction of the sequence (Bn), we have An ∪Bn = Bn+1 = An ∪B0. We

have that

dim
(
Q1

mero(Ĉ;An)
)

= card(An)− 3

and

dim
(
Q1

mero(Ĉ;An ∪Bn)
)

= card(Bn+1)− 3 ≤ card(An)− 3 + card(B0).

It follows that the codimension of ∇f
(
Q1

mero(Ĉ;An)
)

in Q1
mero(Ĉ;Bn+1) is at most

card(B0) . In addition, F ◦ f = F , thus

F∗
(
∇f (q)

)
= F∗(q)− F∗(f∗q) = 0.

and ∇f
(
Q1

mero(Ĉ;An)
)

is contained in the kernel of F∗. As a consequence,

dim F∗
(
Q1

mero(Ĉ;Bn+1)
)
≤ card(B0). �

To prove that F∗
(
Q1(Ĉ;B)

)
has finite dimension, we now proceed as follows.

The sequence of spaces F∗
(
Q1

mero(Ĉ;Bn)
)

is increasing. According to the previous

lemma, they are all contained in a subspace Q of Q1
hol(UrOf ) of dimension at most

card(B0). According to Theorem 1,

Q1
mero(Ĉ;B) :=

⋃
n≥0

Q1
mero(Ĉ;Bn)

is dense in Q1(Ĉ;B) for the L1-norm. Since F∗ : Q1(Ĉ;B) → Q1
hol(UrOf )

is continuous, we deduce that F∗
(
Q1(Ĉ;B)

)
⊆ Q, thus has dimension at most

card(B0). �

8. Parabolic implosion in dimension 1

In this section, we recall the main ingredients in the proof that the Julia set
Jf does not depend continuously on f (for the Hausdorff topology on the space of
compact subsets of C). More precisely, if (Jn) is a sequence of compact subsets of
C, then

lim supJn :=
⋂
m

⋃
n≥m

Jn.

We then have the following result (see [D]).

Theorem 3. Assume f : C→ C is a polynomial fixing 0 with f(z) = z+z2+O(z3).
Then,

Jf ( lim sup
δ→0

Jf+δ.

The proof is based on the description of limits of iterates of f + δ in terms of
Fatou coordinates. Those limits are called Lavaurs maps.
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8.1. Parabolic basin. In the remainder of Section 8, we assume that f : C → C
is a polynomial whose expansion near 0 is of the form

f(z) = z + z2 + az3 + O(z4) with a ∈ C.
To understand the local dynamics of f near 0, it is convenient to consider the change
of coordinates Z := −1/z. In the Z-coordinate, the expression of f becomes

F (Z) = Z + 1 +
b

Z
+ O

(
1

Z2

)
with b := 1− a.

In particular, if R > 0 is large enough, F maps the right half-plane {Re(Z) > R}
into itself, so that if r > 0 is close enough to 0, f maps the disk D(−r, r) into itself.
In addition, the orbit under f of any point z ∈ D(−r, r) converges to 0 tangentially
to the real axis. Similarly, if r > 0 is sufficiently close to 0, there is a branch of f−1

which maps the disk D(r, r) into itself and the orbit under that branch of f−1 of
any point z ∈ D(r, r) converges to 0 tangentially to the real axis.

Definition 20. The basin Bf is the open set of points whose orbit under iteration
of f intersects the disks D(−r, r) for all r > 0.

0

Bf

Figure 2. For the cubic polynomial f(z) = z + z2 + 0.95z3, the
basin Bf (grey) is the interior of the filled-in Julia set Kf .

8.2. Fatou coordinates. In order to understand further the local dynamics of f
near 0, it is customary to use local attracting and repelling Fatou coordinates. In
the case of a polynomial, those Fatou coordinates have global properties.

Proposition 7. There exists a (unique) attracting Fatou coordinate Φf : Bf → C
which semi-conjugates f : Bf → Bf to the translation T1 : C 3 Z 7→ Z + 1 ∈ C:

Φf ◦ f = T1 ◦ Φf .



16 X. BUFF

and satisfies the normalization:

Φf (z) = −1

z
− b log

(
−1

z

)
+ o(1) as Re

(
−1

z

)
→ +∞.

Proof. For z ∈ Bf , set

Z := −1

z
, Zn := − 1

f◦n(z)
and Φn(z) := Zn − n− b logZn.

We have that

Re(Zn)→ +∞ and Zn+1 = Zn + 1 +
b

Zn
+ O

(
1

Z2
n

)
,

so that
1

Zn
= O

(
1

Z + n

)
as n→ +∞.

As a consequence,

Φn+1(z)− Φn(z) = Zn+1 − Zn − 1− b log
Zn+1

Zn
= O

(
1

Z2
n

)
= O

(
1

(Z + n)2

)
.

So, the sequence (Φn) converges to a limit Φf : Bf → C which satisfies

Φf (z) = Φ0(z) + O

(
1

Z

)
= −1

z
− b log

(
−1

z

)
+ o(1) as Re

(
−1

z

)
→ +∞.

Passing to the limit on the relation Φn◦f = T1◦Φn+1 yields the required result. �

Figure 3 gives a rough idea of the behavior of the Fatou coordinate Φf for the
cubic polynomial f(z) := z + z2 + 0.95z3. The basin Bf contains the two critical
points of f . Those points and their iterated preimages form the critical points of
Φf . Denote by c+ the critical point with positive imaginary part and by c− its
complex conjugate. Set v± := Φf (c±). Points z ∈ Bf are colored according to the
location Φf (z):

• dark grey when Im
(
Φf (z)

)
< Im(v−),

• light grey when Im(v−) < Im
(
Φf (z)

)
< Im(v+) and

• medium grey when Im(v+) < Im
(
Φf (z)

)
.

Proposition 8. There exists a (unique) repelling Fatou parametrization Ψf : C→
C which semi-conjugates T1 : C→ C to f : C→ C:

Ψf ◦ T1 = f ◦Ψf .

and satisfies the normalization:

Ψf (Z) = − 1

Z + b log(−Z) + o(1)
as Re(Z)→ −∞.

Proof. Choose r > 0 sufficiently close to 0 so that there is a branch g of f−1 which
maps the disk D(r, r) into itself. For z ∈ D(r, r), set

Z := −1

z
, Zn := − 1

g◦n(z)
and Φn(z) := Zn + n− b log(−Zn).

Note that

Zn = Zn+1 + 1 +
b

Zn+1
+ O

(
1

Z2
n+1

)
.
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0

c−

c+

v−

v+

-
Φf

Figure 3. Behavior of Φf for f(z) := z + z2 + 0.95z3. Right:
three regions delimited by the horizontal lines passing through the
critical values of Φf . Left: the basin Bf is tiled by the preimages
of those three regions by Φf .

So, as in the previous proof

Φn+1(z)− Φn(z) = Zn+1 − Zn + 1 + b log
Zn+1

Zn
= O

(
1

Z2
n+1

)
= O

(
1

(Z − n)2

)
.

The sequence Φn converges in the left half-plane
{

Re(Z) < −1/(2r)
}

to a limit Φg
which satisfies

Φg(z) = Φ0(z) + O

(
1

Z

)
= Z − b log(−Z) + o(1) as Re

(
−1

z

)
→ −∞.

Passing to the limit on the equation Φn+1 ◦ f = T1 ◦ Φn shows that Φg conjugates
f to T1. The inverse Ψf of Φg conjugates T1 to f and

Z = Φg ◦Ψf (Z) = − 1

Ψf (Z)
−b log

(
− 1

Ψf (Z)

)
+o(1) = − 1

Ψf (Z)
−b log(−Z)+o(1)

as Re(Z)→ −∞. �

8.3. Lavaurs maps.

Definition 21. The Lavaurs map Lf : Bf → C is the map

Lf := Ψf ◦ Φf : Bf → C.

Note that the Lavaurs map Lf commutes with f . Indeed, Φf ◦ f = T1 ◦Φf and
Ψf ◦ T1 = f ◦Ψf , so that

Lf ◦ f = Ψf ◦ Φf ◦ f = Ψf ◦ T1 ◦ Φf = f ◦Ψf ◦ Φf = f ◦ Lf .
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Figure 4 gives a rough idea of the behavior of the Lavaurs map Lf for the cubic
polynomial f(z) := z + z2 + 0.95z3. Points in the basin Bf are colored according
to the location of their image by Lf :

• grey when Lf (z) ∈ Bf ,
• white otherwise.

Figure 4. Behavior of Lf for f(z) := z + z2 + 0.95z3. The set of
points z ∈ Bf whose image by Lf remains in Bf is colored in grey.
The restriction of Lf to each bounded white domain is a covering

of C \ Bf

8.4. Discontinuity of the Julia set. Set

K(Lf ) :=
⋂
n≥0

L−nf (Kf ) and J (Lf ) := ∂K(Lf ).

Figure 5 shows K(Lf ) for the cubic polynomial f(z) = z + z2 + 0.95z3.
The following result may be considered as the main reason why Lavaurs maps

are studied in holomorphic dynamics.

Proposition 9 (Lavaurs). Assume f : C→ C is a polynomial whose expansion at
0 is f(z) = z + z2 + O(z3). Let (Nn) be a sequence of integers tending to +∞ and
(εn) be a sequence of complex numbers tending to 0, such that

Nn −
π

εn
→ 0.

Then,
(f + ε2

n)◦Nn → Lf locally uniformly on Bf .
In addition,

Jf ( J (Lf ) ⊆ lim inf Jf+ε2n
and lim supKf+ε2n

⊆ K(Lf ) ( Kf .
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Figure 5. The set K(Lf ) for f(z) = z+z2 +0.95z3. The Lavaurs
map Lf has two complex conjugate sets of attracting fixed points.
The fixed points of Lf are indicated and their basins of attraction
are colored (dark grey for one of the fixed points, and light grey for
the others). Those basins form the interior of K(Lf ). The black
set J (Lf ) is the topological boundary of K(Lf ).

Proof. See [D] or [Sh]. �

We do not present the proof of this result which is rather technical. Instead, we
will show that the result holds for the Möbius transformation

g(z) =
z

1− z
= z + z2 + O(z3).

In that case, all maps involved are Möbius transformations and the computations
are explicit. If we perform the change of coordinates Z = −1/z, the Möbius
transformation g gets conjugated to T1. Thus,

Φg(z) = −1

z
and Ψg(Z) = − 1

Z
, so that Lg = id.

Note that g + ε2 is also a Möbius transformation. It has two fixed points

α± = ±iε+ O(ε2) with multipliers λ± = exp
(
±2iε+ O(ε3)

)
.

So, if N → +∞ and

N − π

ε
→ 0, so that ε =

π

N + o(1)
=

π

N
+ o

(
1

N2

)
,

then (g + ε2)◦N is a Möbius transformation fixing α± with multipliers

µ± := (λ±)N = exp (±2πi + o(1/N)) = 1 + o

(
1

N

)
.
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This Möbius transformation is

z 7→ α+ +
µ+ · (z − α+)

1− µ+ − 1

α+ − α−
(z − α+)

.

Since

µ+ − 1 = o

(
1

N

)
= o(α+ − α−),

we see that indeed,
(g + ε2)◦N −→

N→+∞
Lg.

8.5. Lavaurs maps with an attracting fixed point.

Proposition 10. Consider the cubic polynomial f : C→ C defined by

f(z) := z + z2 + az3 with a ∈ C.
If r > 0 is sufficiently close to 0 and a ∈ D(1 − r, r), then the Lavaurs map
Lf : Bf → C admits an attracting fixed point.

Numerical experiments suggest that the value a = 0.95 works (see Figure 5).

Proof. We outline the proof; see [ABDPR] for details. Set

Uf := Ψ−1
f (Bf ) and Ef := Φf ◦Ψf : Uf → C.

The open set Uf contains an upper half-plane and a lower half-plane. Figure 6
shows the domain Uf , for f(z) = z + z2 + 0.95z3, tiled by the preimages by Ef of
three regions defined as in Figure 3.

The open set Uf is invariant by T1 and the map Ef commutes with T1. So,
Ef − id is periodic of period 1 and has a Fourier expansion which holds in a upper
half-plane:

Ef (Z) = Z +
∑
k≥0

cke2πikZ .

An elementary computation using the expansion of Φf and Ψf near infinity yields
that c0 = −πi(1− a):

Ef (Z) = Φf ◦Ψf (Z) = Z + (1− a) log(−Z) + o(1)

− (1− a) log
(
Z + (1− a) log(−Z) + o(1)

)
+ o(1)

= Z + (1− a) log(Z)− πi(1− a)− (1− a) log(Z) + o(1)

= Z − πi(1− a) + o(1).

A more elaborate argument, based on the notion of finite type analytic map intro-
duced by Adam Epstein, shows that:

Ef (Z) = Z − πi(1− a) + c1e2πiZ + o(e2πiZ) with c1 6= 0.

It follows that when a 6= 1 is close to 1, Ef has a fixed point Zf with multiplier ρf
satisfying

c1e2πiZ ∼ πi(1− a) and ρf − 1 ∼ 2πic1e2πiZf ∼ −2π2(1− a) as a→ 1.

It follows easily that when r > 0 is sufficiently close to 0 and a ∈ D(1 − r, 1), the
multiplier ρf belongs to the unit disk and Zf is an attracting fixed point of Ef .

Note that Ψf : Uf → Bf semi-conjugates Ef to Lf . So, when Zf is an attracting
fixed point of Ef , the point Ψf (Zf ) is an attracting fixed point of Lf . �
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-
Ef

Figure 6. Behavior of the map Ef for f(z) = z + z2 + 0.95z3.
The domain Uf has two connected components, one containing an
upper half-plane and the other containing a lower half-plane. The
domain is tiled according to the behavior of Ef . The restriction
of Ef to each tile is univalent. The image of medium grey tiles is
the medium grey upper half-plane on the right. The image of dark
grey tiles is the dark grey lower half-plane on the right. The image
of light grey tiles is the horizontal light grey strip on the right.

9. Wandering Fatou components in dimension 2

We will now complete these notes by a sketch of a joint work with M. Astorg,
R. Dujardin, H. Peters and J. Raissy. In [ABDPR] , we prove that there exist
polynomial maps F : C2 → C2 having a wandering Fatou component. The approach
was initially suggested by Misha Lyubich and Han Peters.

9.1. Main result.

Theorem 4. Let f : C→ C and g : C→ C be polynomials of the form

(1) f(z) = z + z2 + O(z3) and g(w) = w − w2 + O(w3).

If the Lavaurs map Lf : Bf → C has an attracting fixed point, then the skew-product
F : C2 → C2 defined by

(2) F (z, w) :=

(
f(z) +

π2

4
w, g(w)

)
admits a wandering Fatou component.

Note that if f and g have the same degree, F extends to an endomorphism of
P2(C). As a corollary of this theorem and Proposition 10, we derive the existence
of polynomial skew-products with a wandering Fatou component.
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Corollary 1. If r > 0 is sufficiently small and a ∈ D(1−r, r), then the polynomial
skew-product

F (z, w) :=

(
z + z2 + az3 +

π2

4
w,w − w2 + w3

)
admits a wandering Fatou component.

9.2. An analog of the Lavaurs estimates in the case of skew products.
Let Bf and Bg be the parabolic basins of 0 under iteration of respectively f and g.
We want to choose (z0, w0) ∈ Bf × Bg so that the first coordinate of F ◦m(z0, w0)
returns close to the attracting fixed point of Lf infinitely many times. The proof
is designed so that the return times are the integers n2 for n ≥ n0. So, we have to
analyze the orbit segment between n2 and (n+ 1)2, which is of length 2n+ 1. The
main step for proving Theorem 4 is the following proposition which is an analog of
Proposition 9 in the setting of skew-products.

Proposition 11. As n→ +∞, the sequence of maps

C2 3 (z, w) 7→ F ◦2n+1
(
z, g◦n

2

(w)
)
∈ C2

converges locally uniformly in Bf × Bg to the map

Bf × Bg 3 (z, w) 7→
(
Lf (z), 0

)
∈ C× {0}.

Proof. We outline the proof; see [ABDPR] for details. If w ∈ Bg, then for large m,

g◦m(w) ' 1

m
.

We want to analyze the behavior of F starting at
(
z, g◦n

2

(w)
)

during 2n+1 iterates.
For large n, the first coordinate of F along this orbit segment is approximately

f(z) + ε2 with ε2 ' π2

4n2
, so that

π

ε
' 2n.

Proposition 9 asserts that if π/ε = 2n, then for large n, the (2n)th iterate of f + ε2

is approximately equal to Lf on Bf .
Our setting is slightly different since ε keeps decreasing along the orbit. Indeed

on the first coordinate we are taking the composition of 2n+ 1 transformations

(f + ε2
k)1≤k≤2n+1 with ε2

k '
π2

4(n2 + k)
, so that

π

εk
' 2n+

k

n
.

The main step of the proof of the proposition consists in a detailed analysis of
this perturbed situation, proving that the decay of εk is counterbalanced by taking
exactly one additional iterate of F . �

9.3. Proof of Theorem 4. Let ξ ∈ Bf be an attracting fixed point of the Lavaurs
map Lf . Let V be a disk centered at ξ, chosen that Lf (V ) is compactly contained
in V . It follows that L◦kf (V ) converges to ξ as k → +∞. Let also W b Bg be an
arbitrary disk.

Denote by π1 : C2 → C the first coordinate projection, that is π1(z, w) := z.
According to Proposition 11, there exists n0 ∈ N such that for every n ≥ n0,

π1 ◦ F ◦(2n+1)(V × g◦n
2

(W )) b V.

Let U be a connected component of the open set F−n
2
0

(
V × g◦n2

0(W )
)
.
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Figure 7. Illustration of Proposition 11 for f(z) = z+z2 +0.95z3 and
g(w) = w−w2. The parabolic basin Bf is colored in grey. It is invariant

under f , but not under fw := f + π2

4
w for w 6= 0. The Lavaurs map

Lf is defined on Bf . The point z0 = −0.05 + 0.9i and its image Lf (z0)
are indicated. The other points are the points zn,k which are defined by
F ◦k(z0, wn2

)
=

(
zn,k, wn2+k

)
for 1 ≤ k ≤ 2n + 1 and wm = g◦m(1/2).

If n is large enough, the point zn,2n+1 is close to Lf (z0). Left: n = 5,
there are 11 points of the orbit. Right: n = 10, there are 21 points of
the orbit.

Lemma 4. The sequence (F ◦n
2

)n≥0 converges locally uniformly to (ξ, 0) on U .

Proof. An easy induction shows that for every integer n ≥ n0,

(3) F ◦n
2

(U) ⊆ V × g◦n
2

(W ).

Indeed this holds by assumption for n = n0. Now if the inclusion is true for some
n ≥ n0, then

π1 ◦ F ◦(n+1)2(U) = π1 ◦ F ◦(2n+1)
(
F ◦n

2

(U)
)

⊂ π1 ◦ F ◦(2n+1)
(
V × g◦n

2

(W )
)
⊂ V,

from which (3) follows.

From this we get that the sequence (F ◦n
2

)n≥0 is uniformly bounded, hence
normal, on U . Also, any cluster value of this sequence of maps is constant and
of the form (z, 0) for some z ∈ V . In addition, (z, 0) is a limit value (associated
to a subsequence (nk)) if and only if

(
Lf (z), 0

)
is a limit value (associated to the

subsequence (1 + nk)). We infer that the set of cluster limits is totally invariant
under Lf : V → V , therefore it must be reduced to the attracting fixed point ξ of
Lf , and we are done. �
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Corollary 2. The domain U is contained in the Fatou set of F .

Proof. It is well-known in our context that the sequence (F ◦m)m≥0 is locally bounded
on U if and only if there exists a subsequence (mk) such that (F ◦mk |U )k≥0 has the

same property. Indeed since W is compact, there exists R > 0 such that if |z| > R,
then for every w ∈ W , (z, w) escapes locally uniformly to infinity under iteration.
The result follows. �

Proof of Theorem 4. Let Ω be the component of the Fatou set FF containing U .

According to Lemma 4, for any integer j ≥ 0, the sequence (F ◦(n
2+j))n≥0 converges

locally uniformly to F ◦j(ξ, 0) =
(
f◦k(ξ), 0) on U , hence on Ω. Therefore, the

sequence (F ◦n
2

)n≥0 converges locally uniformly to
(
f◦j(ξ), 0) on F ◦j(Ω).

As a consequence, if j, k are nonnegative integers such that F ◦j(Ω) = F ◦k(Ω),
then f◦j(ξ) = f◦k(ξ), from which we deduce that j = k. Indeed, ξ belongs to the
parabolic basin Bf , and so, it is not (pre)periodic under iteration of f . This shows
that Ω is not (pre)periodic under iteration of F : it is a wandering Fatou component
for F . �
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