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Abstract. In this article, we study the notion of virtually repelling fixed point.
We first give a definition and an interpretation of it. We then prove that most
proper holomorphic mappings f : U → V with U contained in V have at least
one virtually repelling fixed point.
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1. Preliminaries.

Let f : (C, α) → (C, α) be a holomorphic germ fixing α.
Definition 1. The multiplicity m of α as a fixed point of f is the residue

m = residue
(

1− f ′(z)
z − f(z)

dz, α

)
.

In other words, it is the multiplicity of α as a root of z − f(z). When m = 1, α is
a simple fixed point and when m > 1, α is a multiple fixed point.

The multiplier of f at α is the derivative λ = f ′(α). When |λ| > 1, α is repelling,
when |λ| < 1, α is attracting and when |λ| = 1, α is indifferent.

If α is repelling or multiple, it is weakly repelling.
Remark. Observe that α is multiple if and only if λ = 1.

One easily proves that analytic conjugacy preserves the multiplier at a fixed point
and that topological conjugacy preserves the property of being repelling, attracting
or indifferent. Topological conjugacy preserves the multiplier at an indifferent fixed
point (see Näıshul [N] or Perez-Marco [PM]). It also preserves the multiplicity of a
fixed point and two germs having multiple fixed points with the same multiplicity
are always topologically conjugate (see Camacho [C]).
Definition 2. The residue fixed point index ι(f, α) of f at a fixed point α is the
residue

ι(f, α) = residue
(

1
z − f(z)

dz, α

)
.

If the multiplicity is m and <(ι(f, α)) < m/2, α is virtually repelling, if <(ι(f, α)) >
m/2, α is virtually attracting and if <(ι(f, α)) = m/2, α is virtually indifferent.

It is known that the residue fixed point index is invariant under analytic conju-
gacy (see Milnor [M] Lemma 12.3) but not under topological conjugacy (as men-
tioned above, two germs having a multiple fixed point with the same multiplicity
are always topologically conjugate). Since the notions introduced above are invari-
ant under analytic conjugacies, it makes sense to talk about the multiplier or the
residue fixed point index of a holomorphic germ f : (U,α) → (U,α) where U is an
arbitrary Riemann surface and α ∈ U is an arbitrary point (for example the point
∞ in P1).
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In Sect. 2, we show that a virtually repelling fixed point with multiplicity m may
be thought as the superposition of m fixed points which are repelling on average.
More precisely, we prove the following theorem.
Theorem 1. A germ f : (C, α) → (C, α) has a virtually repelling fixed point at α
if and only if any sufficiently small perturbation fε of f has at least one virtually
repelling fixed point close to α. Besides, if α has multiplicity m and is not virtually
repelling, there exist arbitrarily small perturbations fε having m attracting fixed
points close to α.

In [J], Jellouli proves that when P (z) = e2iπp/qz + z2, then
q + 1

2
− 2q−1 ≤ < (ι(P ◦q, 0)) ≤ q + 1

2
.

The upper bound says that 0 is a virtually repelling fixed point of P ◦q. The proof
relies on the fact that the multiplicity of 0 as a fixed point of P ◦q is q + 1 and
that there exist small perturbations Pε of P such that P ◦qε has only repelling fixed
points. In [Sh3], [B] and [BE], refinements of this result are given.

In Sect. 3 and 4, we prove that most ramified coverings f : U → V with U ⊂ V
have at least one virtually repelling fixed point.
Definition 3. Let U ⊂ V be Riemann surfaces and f : U → V be a holomorphic
map. We say that f is repelling on average if and only if f has finitely many fixed
points αk ∈ U with multiplicities mk and

<
(∑

ι(f, αk)
)

<
1
2

∑
mk.

When a holomorphic map f : U → V is repelling on average, the barycenter of
the quantities ι(f, αk)/mk weighted with multiplicities mk has real part less than
1/2. Therefore, one of those quantities must have real part less than 1/2. Hence,
f must have at least one virtually repelling fixed point.

Let us first consider the case where U = V = P1, i.e., the case of rational maps.
It is well-known (see Milnor [M], Sect. 10) that for any rational map f : P1 → P1,
we have the equality ∑

{α∈P1|α=f(α)}
ι(f, α) = 1.

This is known as the Fatou’s Index Formula, or the Holomorphic Fixed Point For-
mula. When the degree of f is d ≥ 2, it has d + 1 fixed points counted with
multiplicity. Therefore f is repelling on average and has at least one virtually
repelling fixed point. In Sect. 3 and 4, we generalize this result.

In Sect. 3, we introduce the notion of rational-like mappings (see Roesch [R1]
[R2]). Those are ramified coverings f : U → V where U and V are planar Rie-
mann surfaces with finite Euler characteristic and U is relatively compact in V .
We prove an analog of Douady-Hubbard’s Straightening Theorem (see Douady-
Hubbard [DH]). We then prove the following result.
Theorem 2. If f : U → V is a rational-like mapping, then it has at least one
virtually repelling fixed point. Besides, if V is simply connected, f is repelling on
average.
Question. Is a rational-like mapping always repelling on average?

In Sect. 4, we still consider the case where f : U → V is a ramified covering with
U ⊂ V . We allow U not to be compactly contained in V , but we restrict to the case
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where V is simply connected. In that case, f : U → V is conformally conjugate to
a ramified covering g : U ′ → D (via an isomorphism ϕ : V → D). Therefore, we
may restrict our study to ramified coverings f : U → D with U contained in D.
Theorem 3. Let f : U → D be a proper holomorphic map of degree d ≥ 2 with U
contained in D. If |f(z)−z| is bounded away from zero as z ∈ U tends to ∂U , then,
f has d fixed point in U , counting multiplicities, and f is repelling on average. In
particular, it has at least one virtually repelling fixed point.

Finally, in Sect. 5, we give some applications. In particular, we show that if
f is a rational map with a (super)attracting fixed point α whose immediate basin
Ωα is not simply connected, then Ωα separates two virtually repelling fixed points
of f . We also show that when a rational map f has a fixed Herman ring A, each
connected component of P1 \A contains a virtually repelling fixed point.

2. Perturbations of virtually repelling fixed points.

In this section we try and understand the notion of virtually repelling fixed
points. First, observe that this notion is finer than the one of weakly repelling fixed
point. Indeed, when α is not a multiple fixed point, then the residue fixed point
index ι(f, α) and the multiplier λ are related by

ι(f, α) =
1

1− λ
.

Consequently, |λ| > 1 if and only if <(ι(f, α)) < 1/2 and a simple fixed point is
virtually repelling if and only if it is repelling.

When α is a multiple fixed point of multiplicity m and <(ι(f, α)) < m/2, we
think of α has being the superposition of m fixed point which are repelling on
average. This is essentially the content of Theorem 1 which says that a germ
f : (C, α) → (C, α) has a virtually repelling fixed point at α if and only if any
sufficiently small perturbation fε of f has at least one virtually repelling fixed
point close to α. In particular, if all the fixed point of fε are simple, at least one of
them is repelling.

Proof of Theorem 1. First, the result is clear if α is a simple fixed point. Now,
assume α is a multiple fixed point and let m be its multiplicity. The multiplicity
and the residue fixed point index of f at α can be defined via the integrals of
(1−f ′(z))/(z−f(z)) and 1/(z−f(z)) along a small loop γ turning once around α.
Those integrals depend continuously on f . It follows that for any sufficiently small
perturbation fε of f , the sum of the multiplicities mk at the fixed point αk of fε

contained in the region delimited by γ is equal to m and the sum of residue fixed
point indices of fε at the points αk is close to the residue fixed point index of f at
α. In particular, for any sufficiently small perturbation fε, we have

<
(∑

ι(fε, αk)
)

<
1
2

∑
mk.

This precisely means that the barycenter of the quantities ι(fε, αk)/mk weighted
with multiplicities mk has real part less than 1/2. In particular one of those quan-
tities has real part less than 1/2 and the corresponding fixed point is virtually
repelling.

Conversely, assume α is not virtually repelling. We will show that there exist
arbitrarily small perturbations fε having m attracting fixed points close to α. We
will obtain the perturbation in two steps.



4 X. BUFF

Step 1. If α is virtually indifferent, we first make a perturbation that turns it
into a virtually attracting fixed point. For example, consider the perturbation
fε : (C, α) → (C, α) defined by

1
z − fε(z)

=
1

z − f(z)
+

ε

z − α
.

The map fε has a fixed point of multiplicity m at α and the residue fixed point
index is

ι(fε, α) = ι(f, α) + ε.

When <(ε) > 0, the fixed point becomes virtually attracting.

Step 2. Without loss of generality, we may now assume that α is virtually attracting,
i.e., <(ι(f, α)) > m/2.

In order to get a hand on the residue fixed point index, we will use the following
fact, which is known but not absolutely obvious (see for example the appendix
in [BE]): one may perform an analytic change of coordinates so that the Taylor
expansion of f at α becomes

f(z) = α + (z − α) + (z − α)m + ι(f, α)(z − α)2m−1 +O(|z − α|2m).

Let us first study the case of the polynomial g : C→ C defined by

g(z) = α + (z − α) + (z − α)m + ι(f, α)(z − α)2m−1.

We define λε by
1

1− λε
=

i

ε
+

ι(f, α)
m

and set gε = α+λε(g−α). The fixed points of the polynomials gε are the solutions
of the equation

1 + (z − α)m−1 + ι(f, α)(z − α)2(m−1) =
1
λε

.

For small values of ε, the polynomial gε has m attracting fixed points close to α:
one at α with multiplier λε and α1, . . . , αm−1 which, by symmetry, all have the
same multiplier. Thus, the residue fixed point index ι(gε, αk) does not depend on
k = 1, . . . ,m− 1. Now, we have

ι(gε, α) =
i

ε
+

ι(f, α)
m

and

ι(gε, α) +
m−1∑

k=1

ι(gε, αk) −→
ε→0

ι(f, α).

Therefore, for all k = 1, . . . , m− 1, we have

ι(gε, αk) =
−i

(m− 1)ε
+

ι(f, 0)
m

+ o(1).

In particular, for small values of ε, the residue fixed point indices have real part
close to <(ι(f, α))/m > 1/2 and the fixed points are attracting.

We will now define the perturbation of f . Let us work in a local coordinate
where f(z) = g(z) +O(|z − α|2m−1). We define the perturbation fε by

1
z − fε(z)

=
1

z − gε(z)
+

1
z − f(z)

− 1
z − g(z)

.
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The fixed point of fε are the poles of 1/(z − fε(z)). Since

1
z − f(z)

=
1

z − g(z)
+O(1)

the fixed points of fε which are close to α and their residue fixed point indices
coincide with the fixed point of gε which are close to α and their residue fixed point
indices. In particular, for small values of ε, fε has m attracting fixed points close
to α.

Remark. The proof given above also shows that when f : (C, α) → (C, α) has a
virtually repelling fixed point at α with multiplicity m, there exist arbitrarily small
perturbations fε having m repelling fixed points close to α.

3. Rational-like mappings.

Definition 4. A rational-like mapping is a proper holomorphic mapping f : U → V
of degree d ≥ 2, where U and V are connected open subsets of P1 with finite Euler
characteristic and U is relatively compact in V .

A rational-like mapping comes with a filled-in Julia set Kf (the set of non-
escaping points), and a Julia set Jf (the boundary of Kf ). The Julia set Jf may
equivalently be defined as the closure of the set of repelling periodic points. The
following result shows that rational-like mappings behave like rational maps. This
result is probably not new and may already appear somewhere in the literature.

Theorem 4. (Straightening Theorem) For any rational-like map f : U → V ,
there exist a rational map F : P1 → P1, neighborhoods U ′ and V ′ of the Julia set JF

and a quasi-conformal homeomorphism ϕ : V → V ′ which conjugates f : U → V to
F : U ′ → V ′.

Remark. The ∂ derivative of ϕ may be chosen to vanish everywhere on Kf .
Proof. We will only sketch the main lines of the proof of Theorem 4. The
proof mimics the one by Douady and Hubbard of the straightening theorem for
polynomial-like mappings (see Douady-Hubbard [DH]).

By restricting V if necessary, we may assume that U and V have smooth bound-
aries. We denote by (Bi)i∈I the connected components of P1 \ V and by (Dj)j∈J
the connected components of P1 \ U . The sets I and J are finite by assumption,
and the sets Bi and Dj are Jordan domains. Besides, each Bi is contained in a
unique Dj , and the inclusion induces a map ι : I → J . The rational-like map f
induces a mapping f∗ : J → I so that f(∂Dj) = ∂Bf∗(j).

We may now define an extension of f to the Riemann sphere. This extension
will be quasi-regular and will satisfy Shishikura’s principle (see [Sh1], Lemma 1).
Therefore, the proof will be completed.

If (j0, j1, . . . , jn) is a periodic cycle of the map ι ◦ f∗, we define Ajk
to be the

annulus Djk
\ Bf∗(jk−1) and we let djk

be the degree of f |∂Djk
. We choose a real

number r ∈]0, 1[, and we define A′jk
to be the annulus {z ∈ C | rdk−1 ≤ |z| ≤ r}. We

choose quasi-conformal homeomorphisms ϕjk
: Ajk

→ A′jk
which satisfy ϕjk

◦ f =
(ϕjk−1)

djk−1 on ∂Djk−1 . Then, we use ϕjk
to glue the dynamics of z 7→ zdjk in each

disk Djk
. This defines the extension of f in every disk Dj such that j is a periodic

point of the map ι ◦ f∗. For the remaining disks Dj , we choose any quasi-regular
extension.
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Since any rational map F has at least one weakly repelling fixed point, and since
this point is contained in JF , it follows that any rational-like map has at least one
weakly repelling fixed point. However, since quasi-conformal conjugacies do not
necessarily preserve the property of being virtually repelling, one has to work a
little to prove Theorem 2

Proof of Theorem 2. Let us first prove that any rational-like mapping has at
least one virtually repelling fixed point. If this were not the case, we could find
a rational-like mapping f : U → V having only virtually attracting and virtually
indifferent fixed points. The idea is to find a perturbation fε : U ′ → V ′ which is
still rational-like but the fixed points of which are all attracting, which clearly gives
a contradiction.

Denote by α1, . . . , αn ∈ U the fixed points of f . In a neighborhood of each fixed
point αk, Theorem 1 provides a local perturbation fε,k which only has attracting
fixed points. The only difficulty consists in gluing the perturbations fε,k into a
global one. For any meromorphic function h : U → P1, we can write a decompo-
sition h = P(h) + R(h), where P(h) is the polar part of h (i.e., sum of negative
powers of (z−pj) at the poles pj), and R(h) ∈ O(1) is the regular part of h. Then,
in a neighborhood of each fixed point αk, the polar part P(1/(z − fε,k)) converges
to the polar part P(1/(z − f)) at αk as ε tends to 0. Therefore, we can define a
global perturbation fε : U → P1 by

1
z − fε

=
n∑

k=1

P
(

1
z − fε,k

)
+R

(
1

z − f(z)

)
.

The perturbation fε is defined on the whole set U but a priori, it is not rational-like.
However, since fε converge to f on every compact subset of U as ε tends to 0, we
can find a restriction V ′ of V so that U ⊂ V ′ ⊂ V and fε : U ′ = f−1

ε (V ′) → V ′ is
rational-like. The fixed points of fε : U ′ → V ′ and their residue fixed point indices
coincide with the fixed points in U ′ of the maps fε,k and their residue fixed point
indices. By construction, all those points are attracting which gives the required
contradiction.

Let us now prove that any rational-like mapping f : U → V , with V simply
connected, is repelling on average. In that case, f : U → V is conjugate, via an
isomorphism ϕ : V → D, to a rational-like mapping g : U ′ → D. The number of
fixed points of f and g are the same, and the residue fixed point indices coincide.
Thus, without loss of generality, we may assume that V = D.

Then, we may choose r < 1 sufficiently close to 1 so that U is contained in the
disk Dr centered at 0 with radius r. We set Ur = f−1(Dr) so that f : Ur → Dr

is a ramified covering of degree d. For r is sufficiently close to 1, the boundary of
Ur is a union of R-analytic Jordan curves (canonically oriented by Ur) and f is
holomorphic in a neighborhood of Ur.

Observe that the fixed point of f are contained in Ur. We must show that
f : Ur → Dr has d fixed points counting multiplicities. For any z ∈ ∂Ur, we have
|z| < |f(z)|. Thus, by Rouché’s Theorem, f and Id − f have the same number of
zeros in Ur, counting multiplicities. Since f : Ur → Dr is a ramified covering of
degree d, 0 has d pre-images counted with multiplicities. Therefore, there are d
fixed points.
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We must now show that f is repelling on average. The sum of residue fixed point
indices is given by the integral

1
2iπ

∫

∂Ur

dz

z − f(z)
.

We must prove that the real part of this integral is less than d/2. We can decompose
it as follows:

1
2iπ

∫

∂Ur

dz

z − f(z)
=

1
2iπ

∫

∂Ur

1− f ′(z)
z − f(z)

dz +
1

2iπ

∫

∂Ur

f ′(z)
z − f(z)

dz

=
1

2iπ

∫

∂Ur

f ′(z)
f(z)

dz +
1

2iπ

∫

∂Ur

f(z)
z − f(z)

f ′(z)
f(z)

dz

=
1

2iπ

∫

∂Ur

z

z − f(z)
f ′(z)
f(z)

dz.

Now, f : ∂Ur → ∂Dr is orientation preserving, and thus,
1

2iπ

f ′(z)
f(z)

dz is real and

positive. Besides, when z ∈ ∂Ur, we have |f(z)/z| < 1 and thus

<
(

z

z − f(z)

)
<

1
2
.

Therefore,

<
(∫

∂Ur

z

z − f(z)
· 1
2iπ

f ′(z)
f(z)

dz

)
=

∫

∂Ur

<
(

z

z − f(z)

)
· 1
2iπ

f ′(z)
f(z)

dz

<
1
2

(
1

2iπ

∫

∂Ur

f ′(z)
f(z)

dz

)
=

d

2
.

This concludes the proof of Theorem 2.

In fact, still under the assumption that V is simply connected, one can better
control the sum of residue fixed point indices. Let A ⊂ V be the connected compo-
nent of V \U which is not compactly contained in V . Observe that A is an annulus.
There exists a unique real ρ ∈]0, 1[ such that A is conformally equivalent to the
annulus D \ [0, ρ]. The sum of residue fixed points indices of f is contained in the
disk of diameter [dρ/(ρ− 1), dρ/(ρ + 1)]. The proof is very similar to the argument
given above. Without loss of generality, we may assume that V = D and 0 ∈ U .
Since the annulus A is conformally equivalent to D \ [0, ρ], it is known (see Ahlfors
[A], Sect. 4) that for any z ∈ U , we have |z| < ρ. Thus, when z ∈ ∂Ur, z/(z−f(z))

belongs to the disk of diameter [ρ/(ρ− 1), ρ/(ρ + 1)]. Since
1

2iπ

f ′(z)
f(z)

dz defines on

∂Ur a positive measure of total mass d, the quantity

1
d

∫

∂Ur

z

z − f(z)
· 1
2iπ

f ′(z)
f(z)

dz

is a barycenter of the quantities z/(z − f(z)). Thus, it still belongs to the disk of
diameter [ρ/(ρ− 1), ρ/(ρ + 1)] and the result is proved.
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4. Proof of Theorem 3.

We now consider the case of a ramified covering f : U → D of degree d ≥ 2 with
U ⊂ D. We assume that |f(z) − z| remains bounded away from 0 as z ∈ U tends
to ∂U . We will prove that f is repelling on average. We will generalize the proof
given in the settings of rational-like mappings.

Since |z − f(z)| is bounded away from 0 as z tends to ∂U , f has finitely many
fixed point in U . Therefore, for any r sufficiently close to 1, all the fixed points are
contained in the disk Dr and we may count them or compute the sum of residue
fixed point indices via the integrals

1
2iπ

∫

∂Ur

1− f ′(z)
z − f(z)

dz and
1

2iπ

∫

∂Ur

1
z − f(z)

dz,

where Ur = f−1(Dr). The problem is that we may fail to have |z| < |f(z)| on ∂Ur

and thus, we must be careful.
In order to prove that f has d fixed points in U , we have to redo the proof of

Rouché’s Theorem. For r sufficiently close to 1 and any t ∈ [0, 1], the function
z 7→ tz − f(z) does not vanish on ∂Ur. Otherwise, the assumption that |z − f(z)|
remains bounded away from 0 as z tends to ∂U would be violated. It follows that
for any r sufficiently close to 1, the integral

I(t) =
1

2iπ

∫

∂Ur

t− f ′(z)
tz − f(z)

dz

is well defined. It depends continuously on t and takes values in Z. Thus, it is
constant. For t = 0 it gives the number of pre-images of 0, i.e., the degree of f ,
and for t = 1 it gives the number of fixed points of f . Hence, f has d fixed points
in U , counting multiplicities.

Next, we have seen that
∑

{α∈U |α=f(α)}
ι(f, α) =

1
2iπ

∫

∂Ur

z

z − f(z)
f ′(z)
f(z)

dz.

In order to go further with this equality, we would like to do the change of variable
w = f(z). Since f : ∂Ur → ∂Dr is d to 1, we have to be careful. The ramified
covering f : U → D has finitely many critical values in D. Thus, if r0 is sufficiently
close to 1, f : U \ Ur0 → D \Dr0 is a non-ramified covering. We define A to be the
slit annulus

A = D \
{
Dr0 ∪ [r0, 1]

}
,

and we let g1, . . . , gd : A → U be the d inverse branches of f . Then, we can make
the change of variables z = gk(reiθ), summing over the d inverse branches:

∑

{α∈U |α=f(α)}
ι(f, α) =

d∑

k=1

1
2π

∫ 2π

0

gk(reiθ)
gk(reiθ)− reiθ

dθ.

Since gk : A → U is a bounded holomorphic function, a theorem of Fatou asserts
that the radial limit of gk(reiθ) exists for almost every θ ∈]0, 2π[ and that this radial
limit is contained in ∂U . Thus, by Lebesgue dominated convergence theorem, we
may write

∑

{α∈U |α=f(α)}
ι(f, α) =

d∑

k=1

1
2π

∫ 2π

0

gk(eiθ)
gk(eiθ)− eiθ

dθ,
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where gk : ∂D → ∂U is defined almost everywhere by the radial limit of gk. We
have ||gk(eiθ)||∞ ≤ 1 and as a consequence

<

 ∑

{α∈U |α=f(α)}
ι(f, α)


 ≤ d

2
.

In order to get the strict inequality, we must show that we cannot have |gk(eiθ)| = 1
for every k = 1, ..., d and almost every θ ∈]0, 2π[. If this were the case, the boundary
of U would be entirely contained in ∂D and we would have U = D. But then, the
ramified covering f : U → D would be a Blaschke product and |z − f(z)| could not
remain bounded away from 0 as z tends to ∂U .

5. Applications.

Let us first give some applications of Theorem 2. The following result is due
to Przytycki [Pr] if one replaces virtually repelling by weakly repelling. His proof
is completely different. We do not think his arguments can yield the existence of
virtually repelling fixed points.
Proposition 1. Assume f : P1 → P1 is a rational map having a (super)attracting
fixed point α. If the immediate basin Ωα of α is not simply connected, it separates
two virtually repelling fixed points of f .
Proof. Choose simply connected neighborhoods U0 and U1 of α such that U0 is
compactly contained in U1 and f : U1 → U0 is a proper mapping (for example,
choose a small disk in linearizing or Böttcher coordinates). Then, define Un – by
induction – to be the connected component of f−1(Un−1) which contains Un−1. The
immediate basin Ωα is the union of the sets Un. Since Ωα is not simply connected,
there exists an integer n0 > 0 such that Un0 is simply connected but not Un0+1.
Define V = P1 \ Un0 . Then, V is connected and simply connected, but f−1(V )
has several connected components V ′

1 , . . . , V ′
k compactly contained in V . It follows

from proposition 2 that each connected component V ′
j must contain at least one

virtually repelling fixed point of f .

Let us illustrate this proposition with two examples. The first example is due
to Przytycki [Pr]: when f is the Newton’s method of a polynomial P , ∞ is the
unique fixed point which is not attracting. It follows that the immediate basins of
attractions of the roots of P are necessarily simply connected. This result turns out
to be very useful, for example, in Hubbard-Schleicher-Sutherland’s article [HSS].
There, the authors explain how to find all the roots of a polynomial, using Newton’s
method.
Remark. Shishikura [Sh2] proved that any rational map having only one weakly
repelling fixed point has a connected Julia set and thus, every Fatou component
is simply connected. There are examples showing that in Shishikura’s result, one
cannot replace weakly repelling by virtually repelling. For example, the quadratic
rational map z 7→ z +1+1/(9z) has only one virtually repelling fixed point: −1/9.
The other fixed point, ∞, has multiplicity 2 and is virtually attracting. However,
the Julia set is totally disconnected.

The second example is the following: for any integer m ≥ 2, if <(am−1) < −1/2
or <(am−1) > m/2, then the polynomial z− zm +azm+1 has a connected Julia set.
Indeed, this polynomial has only two fixed point: 0 which has multiplicity m and
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residue fixed point index am−1 and 1/a which has multiplicity 1 and residue fixed
point index −am−1. If the hypothesis are satisfied, only one of them is virtually
repelling and the basin of infinity is simply connected. Thus, the Julia set is con-
nected. This result can be proved differently, arguing that the number of critical
points contained in the immediate basin of attraction of a virtually attracting or
indifferent multiple fixed point is greater than the multiplicity of the fixed point
(see for example [Sh3], [B] or [BE]).

Let us now mention a possible application of Theorem 3. The result we give can
probably be improved, for example when a rational map restricts to an orientation
preserving homeomorphism of an annular compact set.
Proposition 2. Let f : P1 → P1 be a rational map that restricts to an orientation
preserving homeomorphism of a Jordan curve γ. Let V be a connected component
of P1 \ γ. Then one of the following three cases must occur.

1. The curve γ contains a fixed point of f .
2. The restriction of f to V is conjugate to a rotation.
3. The component V contains a virtually repelling fixed point of f .

Corollary 1. If a rational map f : P1 → P1 has a fixed Herman ring A, each
connected component of P1 \A contains a virtually repelling fixed point.

In [Sh2], Shishikura proves that more generally, if a rational map f has a periodic
Herman ring, then the cycle of Herman rings must separate two weakly repelling
fixed points. His proof is based on quasi-conformal surgery. We do not know
whether corollary 1 can be proved using Shishikura’s arguments.

Question. If a rational map has a periodic Herman ring, does the cycle of Herman
rings separate two virtually repelling fixed points?

Question. Assume f is a rational map and (γ1, . . . , γk), k > 2, is a cycle of disjoint
Jordan curves. Besides, assume f◦k : γ1 → γ1 is orientation preserving and has
irrational rotation number. Does the cycle of Jordan curves separate two weakly
(or virtually) repelling fixed points?
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