
Math. Proc. Camb. Phil. Soc. 1

On the size of linearization domains

By XAVIER BUFF

Institut de Mathématiques,
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Abstract

Assume f : U ⊂ C → C is a holomorphic map fixing 0 with derivative λ, where
0 < |λ| ≤ 1. If λ is not a root of unity, there is a formal power series φf (z) = z+O(z2) such
that φf (λz) = f

(
φf (z)

)
. This power series is unique and we denote by Rconv(f) ∈ [0,+∞]

its radius of convergence. We denote by Rgeom(f) the largest radius r ∈ [
0, Rconv(f)

]
such that φf

(
D(0, r)

) ⊂ U . In this article, we present new elementary techniques for
studying the maps f 7→ Rconv(f) and f 7→ Rgeom(f). Contrary to previous approaches,
our techniques do not involve studying the arithmetical properties of rotation numbers.

1. Introduction

Notations:

• D := {z ∈ C ; |z| < 1},
• U := {z ∈ C ; |z| = 1},
• D := {z ∈ C ; |z| ≤ 1},
• D∗ := {z ∈ C ; 0 < |z| ≤ 1},
• U~ := {z ∈ C ; |z| = 1 and z is not a root of unity},
• D~

:= {z ∈ C ; 0 < |z| ≤ 1 and z is not a root of unity}.
In the whole article, we assume that the map f is defined and holomorphic in a neigh-
borhood of 0 with f(0) = 0 and f ′(0) = λ ∈ D~

. It is well known that when λ ∈ D∗, the
map f is linearizable: in a neighborhood of the origin, it is analytically conjugate to its
linear part

Lλ : z 7→ λz.

If λ ∈ U~, the map is formally linearizable, but the linearizing power series might fail to
be convergent.
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Definition 1. If f : (C, 0) → (C, 0) is a holomorphic germ fixing 0 with derivative
λ ∈ D~

, we let φf (Z) ∈ C[[Z]] be the unique formal power series φf (Z) = Z + O(Z2)
such that

φf ◦ Lλ = f ◦ φf .

We denote by Rconv(f) ∈ [0, +∞] its radius of convergence.

Our first result is the following. We shall prove it in section 2.

Theorem 1. Suppose (λn ∈ D) converges to λ0 ∈ U~ and r > 0. If the sequence
(fn : D(0, r) → C) with fn(0) = 0 and f ′n(0) = λn satisfies

sup
|z|<r

∣∣fn(z)− λnz
∣∣ =

n→+∞
O(

1− |λn|
)
,

then:

• lim inf
n→+∞

Rconv(fn) ≥ r and

• the sequence (φfn) converges locally uniformly to the identity on D(0, r).

Definition 2. Let Qλ : C→ C be the quadratic polynomial defined by

Qλ(z) = λz(1 + z).

Our second result is the following. We shall prove it in section 4.

Theorem 2. Assume (λn ∈ D~
) converges to λ0 ∈ U~ with Rconv(Qλn) > 0 and

Rconv(Qλ0) > 0 and assume r > 0. If the sequence fn : D(0, r) → C with fn(0) = 0 and
f ′n(0) = λn converges to the rotation Lλ0 locally uniformly on D(0, r), then:

lim inf
n→+∞

(
Rconv(fn)

r

/
Rconv(Qλn)
Rconv(Qλ0)

)
≥ 1.

Remark. The condition Rconv(Qλn) > 0 is automatically satisfied if λn ∈ D∗.

Remark. This theorem is a form of extremality property for the quadratic family
Qλ. In this article, we give a very short proof of this optimality, by an enhancement of
Yoccoz’s methods. In the case λ0 = ei2πθ0 and λn = ei2πθn with θ0 ∈ R and θn ∈ R,
this optimality follows from earlier works [Ri], [ABC] and [BC1]. There, as n → +∞,
one bounds Rconv(fn) from above and Rconv(Qλn) from below, in terms of arithmetical
properties of θ0 and θn. Together, these results imply the aforementioned optimality.
Here, we bypass the arithmetics.

Let us mention a selection of applications of our theorems.

Definition 3. If f : U → C is a holomorphic map defined in a neighborhood U of 0,
fixing 0 with derivative λ ∈ D~

, we set

Rgeom(f) := sup
{
r ∈ [0,Rconv(f)]

∣∣ φf

(
D(0, r)

) ⊂ U
}

and

∆f := φf

(
D

(
0, Rgeom(f)

))
.

As we shall see in section 3, the map φf is univalent on D
(
0,Rgeom(f)

)
, and so,

Rgeom(f) is the conformal radius of ∆f .
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• If λ ∈ D∗, the origin is an attracting fixed point which has a basin of attraction
Ωf :=

{
z ∈ U

∣∣ f◦n(z) → 0 as n → +∞}
and ∆f ⊂ Ωf .

• If λ ∈ U~ and if Rconv(f) > 0, then ∆f is the largest domain in U containing 0
on which f is conjugate to the rotation Lλ. It is the Siegel disk of f .

Remark. If ∆f is relatively compact in U , then Rconv(f) = Rgeom(f). In particular,
this equality holds if f : C → C is a polynomial fixing 0 with derivative λ. For example
Rconv(Qλ) = Rgeom(Qλ). Also Rconv(f) = Rgeom(f) if all boundary points of U are
singularities of f .

We are interested in studying the properties of the map f 7→ Rgeom(f), and for this
purpose, it will be useful to study the properties of the map f 7→ Rconv(f). If the maps fn

and f0 belong to an analytic family (as in the case of the family of quadratic polynomials
Qλ), we usually only have the Lipschitz inequality

sup
z∈K

∣∣fn(z)− f0(z)
∣∣ =

n→+∞
O(|λn − λ0|

)

for all compact subsets K of the domain of definition of f0. In order to apply theorem 1,
we must consider non-tangential limits.

Definition 4. A sequence (λn ∈ D) converges to λ0 ∈ U non-tangentially if the argu-
ment of 1− λn/λ0 remains in a compact subset of ]−π/2, π/2[. Equivalently,

|λn − λ0| = O(
1− |λn|

)
.

Using the later formulation we shall extend this notion to sequences (λn ∈ D~
) converging

to λ0. Thus, such sequences are allowed to take the value λ0.

We have the following corollaries of theorem 1.

Corollary 1. Suppose (λn ∈ D) converges non-tangentially to λ0 ∈ U~ and r > 0. If
the sequence (fn : D(0, r) → C) with fn(0) = 0, f ′n(0) = λn satisfies

sup
|z|<r

∣∣fn(z)− λ0z
∣∣ =

n→+∞
O(|λ0 − λn|

)
, (1·1)

then:

• lim inf
n→+∞

Rconv(fn) ≥ r and

• the sequence (φfn) converges to the identity locally uniformly on D(0, r).

The following result was recently obtained by Gumenuk [G] with different techniques.

Corollary 2. Suppose (λn ∈ D) converges non-tangentially to λ0 ∈ U~ and suppose
f0 : U → C with f0(0) = 0, f ′0(0) = λ0 has a Siegel disk ∆f0 . If the sequence (fn : U → C)
satisfies fn(0) = 0, f ′n(0) = λn and for every compact set K ⊂ ∆f0

sup
z∈K

∣∣fn(z)− f0(z)
∣∣ =

n→+∞
O(|λ0 − λn|

)
, (1·2)

then:

• lim
n→+∞

Rgeom(fn) = Rgeom(f0),

• the sequence (φfn) converges to φf0 locally uniformly on D
(
0, Rgeom(f0)

)
and

• any compact set K ⊂ ∆f0 is contained in ∆fn for n large enough.



4 Xavier Buff and Carsten L. Petersen

The case fn = Qλn was previously obtained by Yoccoz [Y]. Figure 1 shows the sets
∆Qλ

for different values of λ ∈ D~
. As (λn ∈ D∗) converges non-tangentially to λ0 ∈ U

with Rconv(Qλ0) > 0, the sequence of pointed domains (∆Qλn
, 0) converges in the sense

of Carathéodory to the pointed domain (∆Qλ0
, 0).

Fig. 1. The filled-in Julia sets of the polynomials Qtei2πθ for θ :=
√

2 and t = .9, t = .99,
t = .999 and t = 1. We have colored dark grey the sets ∆Q

tei2πθ .

Let us now come to the corollaries of theorem 2. First, we recover the following theorem
of Yoccoz [Y]. This is not surprising since our proof is largely inspired by the proof of
Yoccoz.

Theorem (Yoccoz). If λ0 ∈ U satisfies Rconv(Qλ0) > 0 and if f : (C, 0) → (C, 0) is a
germ fixing 0 with derivative λ0, then Rconv(f) > 0.

Second, under the assumption Rconv(Qλ0) > 0, we can eliminate the conditions (1·1)
and (1·2) in Corollaries 1 and 2.

Corollary 3. Suppose λ0 ∈ U satisfies Rconv(Qλ0) > 0, suppose (λn ∈ D~
) converges

non-tangentially to λ0 and suppose r > 0. If the sequence (fn : D(0, r) → C) with
fn(0) = 0 and f ′n(0) = λn converges to Lλ0 uniformly on D(0, r), then:

• lim inf
n→+∞

Rconv(fn) ≥ r and

• the sequence (φfn) converges to the identity locally uniformly on D(0, r).

Recall that by Yoccoz’s theorem, if λ0 ∈ U is such that Rconv(Qλ0) > 0 and if the map
f0 : U → C satisfies f0(0) = 0 and f ′0(0) = λ0, then Rgeom(f0) > 0 and f0 has a Siegel
disk ∆f0 .

Corollary 4. Suppose λ0 ∈ U satisfies Rconv(Qλ0) > 0, suppose (λn ∈ D) converges
non-tangentially to λ0 and suppose f0 : U → C satisfies f0(0) = 0 and f ′0(0) = λ0. If the
sequence (fn : U → C) with fn(0) = 0 and f ′n(0) = λn converges to f0 locally uniformly
in U , then:

• lim
n→+∞

Rgeom(fn) = Rgeom(f0),

• the sequence (φfn) converges to φf0 locally uniformly on D
(
0, Rgeom(f0)

)
and
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• any compact set K ⊂ ∆f0 is contained in ∆fn for n large enough.

Fourth, the following corollary was obtained by Risler [Ri] with completely different
techniques. His proof relies on a careful study of the arithmetic properties of θ where
λ0 = ei2πθ. In our proof, we do not use these arithmetic properties.

Corollary 5 (Risler). Assume λ0 ∈ U satisfies Rconv(Qλ0) > 0 and f0 : U → C,
(fn : U → C) satisfy f0(0) = fn(0) = 0, f ′0(0) = f ′n(0) = λ0. If the sequence (fn)
converges to f0 locally uniformly in U , then:

• lim
n→+∞

Rgeom(fn) = Rgeom(f0),

• the sequence (φfn) converges to φf0 locally uniformly on D
(
0, Rgeom(f0)

)
and

• any compact set K ⊂ ∆f0 is contained in ∆fn for n large enough.

Finally, we have the following consequence which can be found in [C].

Corollary 6. Assume λ0 ∈ U and let Polyd(λ0) be the set of polynomials of degree
d fixing 0 with multiplier λ0. If Rconv(Qλ0) > 0, then Rconv : Polyd(λ0) → ]0, +∞[ is
continuous.

2. A lower bound on the size of Siegel disks

In this section, we shall prove Theorem 1. So, assume (λn ∈ D) converges to λ0 ∈ U~

and r > 0. Let (fn : D(0, r) → C) with fn(0) = 0, f ′n(0) = λn satisfy

sup
|z|<r

∣∣fn(z)− λnz
∣∣ =

n→+∞
O(

1− |λn|
)
.

We will prove that for every ρ < r, we have Rconv(fn) ≥ ρ for n large enough.

Lemma 1. For all ρ < r, there are integers k0 and n0 such that for all n ≥ n0,

f◦k0
n

(
D(0, ρ)

) ⊂ D(0, ρ).

Proof. Set sn = 1− |λn|. For n large enough, we can write:

fn(z) = λnz exp
(
sn · un(z)

)

with
(
un : D(0, r) → C

)
a sequence of holomorphic functions defined by:

un(z) =
1
sn

log
(

1 +
(

fn(z)
λnz

− 1
))

.

The branch of logarithm is the one defined on D(1, 1), sending 1 to 0, so that un(0) = 0.
In addition, our assumptions imply that the sequence (un) is uniformly bounded on
D(0, r).

Let us fix ρ < r and choose ρ′ ∈ ]ρ, 1[. For each integer k ≥ 1, there exists an integer
nk such that for all n ≥ nk, f◦k+1

n is defined on D(0, ρ′). Then, for all z ∈ D(0, ρ′), we
have:

f◦kn (z) = λk
nz exp

(
ksn · uk

n(z)
)

with uk
n =

1
k

k−1∑

j=0

un ◦ f◦jn .

Note that uk
n(0) = un(0) = 0 and

uk
n ◦ fn = uk

n +
1
k

(
un ◦ f◦kn − un

)
.
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The family
(
uk

n : D(0, ρ′) → C
)
k≥1, n≥nk

is uniformly bounded on D(0, ρ′). Let u :
D(0, ρ′) → C be any limit value as k → +∞. Since fn → Lλ0 , we have:

u ◦ Lλ0 = u.

The function u is constant on orbits under iteration of the rotation Lλ0 . Since λ0 is not a
root of unity, these orbits are not discrete in D(0, ρ′). Thus, u : D(0, ρ′) → C is constant.
This constant is u(0) = 0. Thus, we have proved that as k → +∞, any limit value of the
family

(
uk

n : D(0, ρ′) → C
)
k≥1, n≥nk

is constant equal to 0.

Observe that
log |λ−1

n |
sn

−→
n→+∞

1. Thus, there are integers k0 and n0 such that

(∀n ≥ n0)
(∀z ∈ D(0, ρ)

) ∣∣uk0
n (z)

∣∣ ≤ 1
2

log |λ−1
n |

sn
.

We then easily derive that

(∀n ≥ n0)
(∀z ∈ D(0, ρ)

) |f◦k0
n (z)| ≤ |λn|k0/2 · |z| < |z|.

Thus,

(∀n ≥ n0) f◦k0
n

(
D(0, ρ)

) ⊂ D(0, ρ).

Let us fix ρ < r and choose k0 such that for all sufficiently large n, we have the inclusion
f◦k0

n

(
D(0, ρ)

) ⊂ D(0, ρ). Then, D(0, ρ) belongs to the basin of attraction of 0 and the
map

ψn = lim
j→+∞

f◦jn

λj
n

: D(0, ρ) → C

linearizes fn. We have ψn(0) = 0 and ψ′n(0) = 1. In addition, ψn is a limit of univalent
maps. It is therefore univalent and the family (ψn) is normal. Any limit value ψ linearizes
the rotation Lλ0 and is therefore the identity. As a consequence, for n sufficiently large,
the inverse of ψn : D(0, ρ) → C is defined on a Euclidean disk centered at 0 with radius
arbitrarily close to ρ. This inverse is φfn . Thus, for all ρ < r,

lim inf
n→+∞

Rconv(fn) ≥ ρ.

The result now follows by letting ρ tend to r. Q.E.D.

3. Corollaries of theorem 1

Let us begin with some observations regarding Rgeom(f).

Lemma 2. If λ ∈ D~
and f : U → C is a holomorphic map fixing 0 with derivative

λ, then φf : D
(
0, Rgeom(f)

) → ∆f is an isomorphism.

Proof. Since φf ◦ Lλ = f ◦ φf , we see that f(∆f ) ⊂ ∆f .
If |λ| < 1, the map ψf := lim

k→+∞
λ−kf◦k(z) is defined on ∆f , fixes 0 with derivative 1

and satisfies ψf ◦ f = Lλ ◦ ψf .

If |λ| = 1, the sequence (ψm : ∆f → C)m≥1 defined by ψm :=
1
m

m−1∑

k=0

λ−kf◦k is
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uniformly bounded. Any limit value ψf : ∆f → C fixes 0 with derivative 1 and satisfies
ψf ◦ f = Lλ ◦ ψf .

In both cases, ψf ◦ φf fixes 0 with derivative 1 and commutes with Lλ. It follows that
ψf ◦ φf is equal to the identity near 0, thus on D

(
0, Rgeom(f)

)
by analytic continuation.

So, φf : D
(
0, Rgeom(f)

) → ∆f is an isomorphism with inverse ψf .

Lemma 3. Assume (fn : U → C) converges to f0 : U → C locally uniformly, assume
f0(0) = fn(0) = 0 and suppose λ0 := f ′0(0) ∈ D~

and λn := f ′n(0) ∈ D~
. Then,

lim sup
n→+∞

Rgeom(fn) ≤ Rgeom(f0).

Proof. Set ρ := lim sup Rgeom(fn) and assume, extracting a subsequence if necessary,
that Rgeom(fn) → ρ. For any r < ρ, if n large enough, the maps φfn

are defined and
univalent on D(0, r) and take their values in U . They fix 0 with derivative 1, and thus,
form a normal family. Passing to the limit on the linearizing equation φfn

◦Lλn
= fn◦φfn

,
we see that any limit value φ : D(0, r) → U linearizes f0 :

φ ◦ Lλ0 = f0 ◦ φ.

Since φ(0) = 0 and φ′(0) = 1, we see that φ is a restriction of φf0 and since φ
(
D(0, r)

) ⊂
U , we see that r ≤ Rgeom(f0). Letting r tend to ρ, we see that

lim sup
n→+∞

Rgeom(fn) ≤ Rgeom(f0).

Lemma 4. Assume (fn : U → C) converges to f0 : U → C locally uniformly, assume
f0(0) = fn(0) = 0 and suppose λ0 := f ′0(0) ∈ D and λn := f ′n(0) ∈ D. Then,

lim
n→+∞

Rgeom(fn) = Rgeom(f0).

Proof. It suffices to show that lim inf
n→+∞

Rgeom(fn) ≥ Rgeom(f0). Let r < Rgeom(f0) be

arbitrary and set ∆′ := φf0

(
D(0, r)

)
. If n is large enough, then fn(∆′) is relatively

compact in ∆′ and the linearizing map ψfn := lim
k→+∞

λ−k
n f◦kn is defined on ∆′. Since

f0 : ∆f0 → C is univalent, for n large enough, the maps fn : ∆′ → C are univalent.
As limits of univalent maps, the maps ψfn : ∆′ → C are also univalent. They fix 0
with derivative 1 and thus, belong to a normal family. Any limit value coincides with
ψf0 : ∆′ → D(0, r). It follows that lim inf

n→+∞
Rgeom(fn) ≥ r. The result follows by letting r

tend to Rgeom(f0).

Remark. This establishes the continuity of the map f 7→ Rgeom(f) at f0 when f0 has
an attracting fixed point at 0.

We now come to the proof of our corollaries of theorem 1.

Corollary 1. Suppose (λn ∈ D) converges non-tangentially to λ0 ∈ U~ and r > 0. If
the sequence (fn : D(0, r) → C) with fn(0) = 0, f ′n(0) = λn satisfies

sup
|z|<r

∣∣fn(z)− λ0z
∣∣ =

n→+∞
O(|λ0 − λn|

)
,
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then:

• lim inf
n→+∞

Rconv(fn) ≥ r and

• the sequence (φfn
) converges to the identity locally uniformly on D(0, r).

Proof. If λn → λ0 non tangentially, then |λn − λ0| = O(
1− |λn|

)
, and thus

sup
|z|<r

∣∣fn(z)− λnz
∣∣ = sup

|z|<r

∣∣fn(z)− λ0z
∣∣ +O(|λ0 − λn|

)
= O(

1− |λn|
)
.

Now, apply theorem 1.

Corollary 2. Suppose (λn ∈ D) converges non-tangentially to λ0 ∈ U~ and suppose
f0 : U → C with f0(0) = 0, f ′0(0) = λ0 has a Siegel disk ∆f0 . If the sequence (fn : U → C)
satisfies fn(0) = f0(0) = 0, f ′n(0) = λn and for every compact set K ⊂ ∆f0

sup
z∈K

∣∣fn(z)− f0(z)
∣∣ =

n→+∞
O(|λ0 − λn|

)
,

then:

• lim
n→+∞

Rgeom(fn) = Rgeom(f0),

• the sequence (φfn) converges to φf0 locally uniformly on D
(
0, Rgeom(f0)

)
and

• any compact set K ⊂ ∆f0 is contained in ∆fn for n large enough.

Proof. By lemma 3, lim sup
n→+∞

Rgeom(fn) ≤ Rgeom(f0). Thus, it is enough to prove that

lim inf
n→+∞

Rgeom(fn) ≥ Rgeom(f0). Let φf0 : D
(
0, Rgeom(f0)

) → U be the linearizing map of

f0 fixing 0 with derivative 1. Set

gn := φ−1
f0
◦ fn ◦ φf0 .

For any r < Rgeom(f0), the map gn is eventually defined on D(0, r) and the sequence of
maps

(
gn : D(0, r) → C

)
converges uniformly to the rotation Lλ0 . More precisely,

sup
z∈D(0,r)

∣∣gn(z)− λ0z
∣∣ = sup

w∈φf0 (D(0,r))

∣∣ψf0

(
fn(w)

)− ψf0

(
f0(w)

)∣∣ = O(|λ0 − λn|
)
.

By corollary 1 , lim inf Rconv(gn) ≥ r and the sequence (φgn) converges uniformly on
every compact subset of D(0, r) to the identity. Using φfn = φf0 ◦φgn we see that for all
r′ < r, if n is large enough, φfn is defined on D(0, r′) and takes its values in U and thus,
Rgeom(fn) ≥ r′. In addition, any compact subset of φf0

(
D(0, r)

)
is eventually contained

in φfn

(
D(0, r)

)
. The result follows easily by letting r tend to Rgeom(f0).

4. Perturbations of a Brjuno rotation

4·1. A key proposition

Recall that a quadratic-like map g : U → V is a proper map of degree 2 between two
simply connected domains U and V with U compactly contained in V (see for example
[DH]).

Proposition 1. Assume f : D → C and g : D → C are holomorphic maps fixing 0
with multiplier λ ∈ D~

. If g is a quadratic-like map and

sup
|z|<1

∣∣f(z)− λz
∣∣ < lim inf

|z|→1

∣∣g(z)
∣∣− 1. (4·1)

Then, Rconv(f) ≥ Rconv(g).
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Proof. The proof to which the rest of this subsection is devoted, is a modification of
a proof exposed in [BC2], which itself is a modification of a proof of Yoccoz [Y]. The
essential steps are formulated as lemmas imbedded in the proof.

Without loss of generality, we may assume that Rconv(g) > 0 since otherwise, the result
is trivial. Consider the one-parameter families of maps

{
fa : D

(
0,min(1, |a|−1)

) → C
}

a∈C and
{
gb : D

(
0, min(1, |b|−1)

) → C
}

b∈C
defined by:

fa(z) = f(z)− λz +
1
a
g(az) and gb(w) =

1
b
f1/b(bw) =

1
b
f(bw)− λw + g(w).

The family fa extends analytically at a = 0 by f0 = f and the family gb extends
analytically at b = 0 by g0 = g. We have:

(∀b ∈ C∗) Rconv(gb) =
1
|b| Rconv(f1/b).

Set

Ub :=
{
z ∈ D ∣∣ gb(z) ∈ D}

.

Lemma 5. When |b| ≤ 1, the restriction gb : Ub → D is quadratic-like.

Proof. Since g0 : D→ C is quadratic-like, U0 = g−1
0 (D) is compactly contained in D and

every point in D has exactly two preimages by g0 in D, counting multiplicities. Schwarz’s
lemma and Rouché’s theorem implies that for |b| ≤ 1, Ub is compactly contained in D
and every point in D has exactly two preimages by gb in D, counting multiplicities. It
follows that gb : Ub → D is a proper map of degree 2. Note that Ub is connected since
otherwise, the component of Ub containing 0 would be mapped biholomorphically to D,
which, by Schwarz’s lemma, is not possible since |λ| ≤ 1.

This lemma has the following consequence.

Lemma 6. The map b 7→ log Rconv(gb) is harmonic in a neighborhood of D.

Proof. If |λ| < 1, we may argue as follows. We can find r0 > 1 so that when |b| < r0,
the map gb : Ub → D is a quadratic-like map. It has an attracting fixed point at 0
with multiplier λ. Let ωb be the unique critical point of gb in Ub, let Ωb be the basin of
attraction of 0 and let ψb : Ωb → C be the linearizing map defined by: ψb = lim

n→+∞
λ−ng◦nb .

Then, φgb
: D

(
0,Rconv(gb)

) → D is univalent with inverse ψb and Rconv(gb) =
∣∣ψb(ωb)

∣∣.
The map b 7→ ψb(ωb) is holomorphic in D(0, r0) and so, the map b 7→ log Rconv(gb) is
harmonic in D(0, r0).

If |λ| = 1, we may argue as follows. We can find r0 > 1 and t0 < 1 so that when
t0 < t ≤ 1 and |b| < r0, the map gb,t : Ub → D(0, t) defined by

gb,t(w) = t · gb(w)

is a quadratic-like map. This quadratic-like map has an attracting fixed point at 0 with
multiplier tλ converging non tangentially to λ as t → 1. As previously,

Rconv(gb,t) =
∣∣ψb,t(ωb,t)

∣∣.
with ωb,t the unique critical point of gb,t in Ub and ψb,t : Ωb,t → C the linearizing map
defined by ψb,t = lim

n→+∞
(tλ)−ng◦nb,t .
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Consider the family of holomorphic maps
{
ut : D(0, r0) → D∗

}
t0<t<1

defined by:

ut(b) = ψb,t(ωb,t).

This family is normal and there is a sequence tn ∈ ]t0, 1[ converging to 1 such that
the sequence (utn) converges uniformly on every compact subset of D(0, r0) to a limit
u1 : D(0, r0) → D which either identically vanishes, or does not vanish.

By Corollary 2 and Lemma 4, we have1

∀b ∈ D(0, r0) log Rconv(gb) = log
∣∣u1(b)

∣∣.
Since we assumed that Rconv(g0) = Rgeom(g) > 0, u1 does not vanish on D(0, r0) and
b 7→ log Rconv(gb) is harmonic in D(0, r0).

Let avg
|a|=r

m(a) denote the average of the function m(a) on the circle |a| = r (with

respect to the Lebesgue measure on the circle). As an immediate consequence of lemma
6, we have the following equality:

log Rconv(g) = avg
|b|=1

log Rconv(gb) = avg
|a|=1

log Rconv(fa). (4·2)

The following result is extracted from [BC2]. We include it here for completeness.

Lemma 7. log Rconv(f) ≥ avg
|a|=1

log Rconv(fa)

Proof. Look at the formal linearizing power series of fa:

φfa(Z) = Z +
+∞∑
n=2

bn(a)Zn.

By Hadamard’s theorem,
1

Rconv(fa)
= lim sup

n→+∞
n
√
|bn(a)|.

The coefficients bn(a) are polynomials in a. Thus

1
n

log
∣∣bn(0)

∣∣ ≤ avg
|a|=1

1
n

log
∣∣bn(a)

∣∣.

By lemma 5, for |a| = 1, the map fa has a quadratic-like restriction fa : 1
aU1/a → D. In

that case, the linearizing map φfa takes its values in D and it follows from the Cauchy
inequalities that

∣∣bn(a)
∣∣ ≤ 1(

Rconv(fa)
)n .

Recall that b = 1/a. We have seen that b 7→ Rconv(gb) is continuous and non-vanishing
on D. Thus, when |a| = 1, Rconv(fa) = Rconv(gb) reaches a minimum c > 0 and

1
n

log
∣∣bn(a)

∣∣ ≤ log
1

Rconv(fa)
≤ log

1
c
.

1 Note that since the maps gb : Ub → D and gb,t : Ub → D(0, t) are quadratic-like, we have
Rconv(gb) = Rgeom(gb) and Rconv(gb,t) = Rgeom(gb,t).
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This uniform upper bound allows us to apply Fatou’s lemma:

− log Rconv(f) = lim sup
n→+∞

1
n

log |bn(0)| ≤ lim sup
n→+∞

avg
|a|=1

1
n

log |bn(a)|

≤ avg
|a|=1

lim sup
n→+∞

1
n

log |bn(a)| = − avg
|a|=1

log Rconv(fa).

Equality 4·2 and lemma 7 yield:

log Rconv(f) ≥ avg
|a|=1

log Rconv(fa) = log Rconv(g),

whence Rconv(f) ≥ Rconv(g). This completes the proof of Proposition 1.

4·2. Proof of theorem 2

Our standing assumption is that λ0 ∈ U is such that Rconv(Qλ0) > 0. In that case, we
say that the rotation Lλ0 is a Brjuno rotation.2

We assume
(
fn : D(0, r) → C

)
n≥0

is a sequence of maps such that

• fn(0) = 0,
• f ′n(0) = λn ∈ D~

and
• the sequence (fn) converges to the rotation Lλ0 uniformly on every compact subset

of D(0, r).

We want to show that

lim inf
n→+∞

(
Rconv(fn)

r

/
Rconv(Qλn)
Rconv(Qλ0)

)
≥ 1.

Let Kλ be the filled-in Julia set of Qλ and bötλ : C \ Kλ → C \ D be the Böttcher
coordinate conjugating Qλ to z 7→ z2. Let Gλ : C → [0,+∞[ be the Green function of
Qλ:

Gλ(z) :=

{
0 if z ∈ Kλ

log
∣∣bötλ(z)

∣∣ if z ∈ C \Kλ.

For η > 0, set

Uλ,η :=
{
z ∈ C ∣∣ Gλ(z) < η

}
.

By Schwarz’s reflection principle, any conformal representation χλ,η : Uλ,η → D sending
0 to 0 extends univalently to Uλ,2η. Indeed, if eη ≤ |z| < e2η, then 1 <

∣∣e2η/z̄
∣∣ ≤ eη and

we can set

χλ,η

(
böt−1

λ (z)
)

= s ◦ χλ,η ◦ böt−1
λ

(
e2η

z̄

)
with s(z) =

1
z̄
.

Denote by Vλ,η the image of the extended map χλ,η : Uλ,2η → C. The isomorphism
χλ,η : Uλ,2η → Vλ,η conjugates Qλ : Uλ,η → Uλ,2η to a quadratic-like map gλ,η : D→ Vλ,η.

2 Yoccoz [Y] proved that Qei2πθ is linearizable if and only if θ satisfies an arithmetic condition
known as the Brjuno condition.
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The modulus of the annulus Vλ,η \ D is equal to η/(2π) and thus, there is a constant
c(η) > 0 such that

(∀λ ∈ D) lim inf
|z|→1

∣∣gλ,η(z)
∣∣ > 1 + c(η).

If U ⊂ C is a simply connected domain containing 0, we denote by Rad(U) its conformal
radius at 0, i.e. Rad(U) =

∣∣1/χ′(0)
∣∣ for any isomorphism χ : U → D fixing 0.

Now, given ρ < r, if n is large enough, the map Fn : z 7→ ρ−1fn(ρz) is defined and
holomorphic on a neighborhood of D and

sup
|z|=1

∣∣Fn(z)− λnz
∣∣ < c(η).

By proposition 1, we see that for all η > 0 and all ρ < r, if n is large enough,

Rconv(fn)
ρ

= Rconv(Fn) ≥ Rconv(gλn,η) =
Rconv(Qλn)
Rad(Uλn,η)

.

As n tends to infinity, Rad(Uλn,η) tends to Rad(Uλ0,η). So, this can be rewritten as

(∀η > 0) (∀ρ < r) lim inf
n→+∞

Rconv(fn) · Rad(Uλ0,η)
Rconv(Qλn)

≥ ρ.

As η tends to 0, Rad(Uλ0,η) tends to Rconv(Qλ0). So, letting η tend to 0 and ρ tend to
r, we obtain the required result:

lim inf
n→+∞

Rconv(fn) · Rconv(Qλ0)
Rconv(Qλn)

≥ r.

This completes the proof of theorem 2.

5. Corollaries of theorem 2

Let us begin with Yoccoz’s theorem.

Theorem (Yoccoz). If λ0 ∈ U is such that Rconv(Qλ0) > 0 and if f : (C, 0) → (C, 0)
is a germ fixing 0 with derivative λ0, then Rconv(f) > 0.

Proof. Choose λn = λ0 and define fn : (C, 0) → (C, 0) by

fn(z) =
1
rn

f(rnz)

where (rn) is a sequence converging to 0. Then, (fn) converges locally uniformly in C to
the rotation Lλ0 . Therefore,

lim inf
n→+∞

Rconv(f)
rn

= lim inf
n→+∞

Rconv(fn) = +∞.

Thus, Rconv(f) > 0.

Let us now come to the proofs of our corollaries of theorem 2.

Corollary 3. Suppose λ0 ∈ U satisfies Rconv(Qλ0) > 0, suppose (λn ∈ D~
) converges

non-tangentially to λ0 and supose r > 0. If the sequence (fn : D(0, r) → C) with fn(0) = 0
and f ′n(0) = λn converges to Lλ0 uniformly on D(0, r), then:

• lim inf
n→+∞

Rconv(fn) ≥ r and
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• the sequence (φfn) converges to the identity locally uniformly on D(0, r).

Proof. Assume (λn ∈ D~
) converges non tangentially to λ0. According to Corollary 2,

Rconv(Qλn
) = Rgeom(Qλn

) converges to Rconv(Qλ0) = Rgeom(Qλ0). Thus, by Theorem 2,
lim inf
n→+∞

Rconv(fn) ≥ r.

The space of univalent maps on D(0, r), fixing the origin with derivative 1, is compact.
The map φfn

is univalent on D
(
0,Rgeom(fn)

)
and fixes the origin with derivative 1. We

will show that lim inf
n→+∞

Rgeom(fn) ≥ r. Then, any limit map of the sequence (φfn
) is the

identity on D(0, r), because it conjugates Lλ0 to itself. Thus, the whole sequence (φfn)
converges to the identity locally uniformly on D(0, r).

To see lim inf
n→+∞

Rgeom(fn) ≥ r, choose a function g holomorphic in D(0, r) such that all

points of modulus r are singularities of g. By upper semicontinuity of Rgeom (Lemma 3),
if ε is small enough, then Rgeom(fn + εz2g) ≤ Rgeom(fn) + 1/n and for all but countably
many values of ε all points of modulus r are singularities of fn + εz2g. Thus we can
choose a sequence (εn) converging to 0 such that gn = fn + εnz2g satisfies:

(i) gn → Lλ locally uniformly in D(0, r).
(ii) Rgeom(gn) = Rconv(gn) by the Remark following Definition 3.
(iii) Rgeom(gn) ≤ Rgeom(fn) + 1/n.

Hence

lim inf
n→+∞

Rgeom(fn) ≥ lim inf
n→+∞

Rgeom(gn) = r,

where the inequality follows from (iii) and the equality follows by combining Theorem 2
and (ii).

Corollary 4. Suppose λ0 ∈ U satisfies Rconv(Qλ0) > 0, suppose (λn ∈ D) converges
non-tangentially to λ0 and suppose f0 : U → C satisfies f0(0) = 0 and f ′0(0) = λ0. If the
sequence (fn : U → C) with fn(0) = 0 and f ′n(0) = λn converges to f0 locally uniformly
in U , then:

• lim
n→+∞

Rgeom(fn) = Rgeom(f0),

• the sequence (φfn) converges to φf0 locally uniformly on D
(
0, Rgeom(f0)

)
and

• any compact set K ⊂ ∆f0 is contained in ∆fn for n large enough.

Proof. Similar to the proof of Corollary 2, Corollary 1 being replaced by Corollary 3.

Corollary 5 (Risler). Assume λ0 ∈ U satisfies Rconv(Qλ0) > 0 and f0 : U → C,
(fn : U → C) satisfy f0(0) = fn(0) = 0, f ′0(0) = f ′n(0) = λ0. If the sequence (fn)
converges to f0 locally uniformly in U , then:

• lim
n→+∞

Rgeom(fn) = Rgeom(f0),

• the sequence (φfn) converges to φf0 locally uniformly on D
(
0, Rgeom(f0)

)
and

• any compact set K ⊂ ∆f0 is contained in ∆fn for n large enough.

Proof. Similar to the proof of Corollary 4.

Corollary 6. Assume λ0 ∈ U and let Polyd(λ0) be the set of polynomials of degree
d fixing 0 with multiplier λ0. If Rconv(Qλ0) > 0, then Rconv : Polyd(λ0) → ]0, +∞[ is
continuous.
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Proof. By Yoccoz’s theorem, Rconv(P ) > 0 for all P ∈ Polyd(λ0). The linearizing maps
φP : D

(
0, Rconv(P )

) → C are univalent and take their values in the filled-in Julia set
of P : they are conformal isomorphisms between the disk D

(
0, Rconv(P )

)
and the Siegel

disk ∆P . It follows that Rconv(P ) < +∞ for all P ∈ Polyd(λ0). The result now follows
from corollary 5 since Rconv(P ) = Rgeom(P ).
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