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Abstract. A theorem of Jakobson asserts that the set of parameters c ∈ R,
for which the quadratic polynomial fc(z) = z2 + c admits an invariant mea-
sure absolutely continuous with respect to the Lebesgue measure, has positive

length. We present a proof based on tableaux and Yoccoz’s puzzles.

1. Introduction

In this article, we study dynamical properties of quadratic polynomials

fc(z) = z2 + c with c ∈ C.

The orbit of a point z0 ∈ C is the sequence {zn}n≥0 defined for n ≥ 1 by

zn := fc(zn−1) = f◦nc (z0).

The filled-in Julia set Kc is the set of points with bounded orbit. The critical point
c0 := 0 plays a special role. For example, Kc is connected if and only if the critical
orbit {

cn := f◦nc (0)
}
n≥0

is bounded.
When c ∈ [−2,−1], the interval

Jc := [c1, c2] = [c, c2 + c]

contains 0 and is invariant: fc(Jc) ⊆ Jc. The object of this paper is to present a
(new) proof of the Jakobson Theorem.

Theorem 1.1 (Jakobson). The set J of parameters c ∈ [−2,−1], for which fc
admits an absolutely continuous invariant measure supported on Jc, has positive
Lebesgue measure. In addition, −2 is a point of density of J .

A measure µ on R is absolutely continuous with respect to the Lebesgue measure
Leb on R if there is a function h ∈ L1(R) such that µ = h · Leb. It is invariant by
f := fc if f∗µ = µ, i.e. for all continuous function φ∫

R
φ ◦ f dµ =

∫
R
φ dµ

or equivalently, if for any Borel set A, we have that

µ
(
f−1(A)

)
= µ(A).

We shall use the abbreviation a.c.i.m. for absolutely continuous invariant measure.
Our approach is largely inspired by notes of Yoccoz [Y] and by [BH], [H] and

[M]. The argument depends on the recurrence properties of the critical point: we
need to show that if the critical point is weakly recurrent, an appropriate measure
exists, and that such weakly recurrent polynomials form a set of positive length.
Yoccoz puzzles and Branner-Hubbard tableaux are a tool developed to control such
recurrence, and will be the frame of our proof.
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2. Sketch of the proof

2.1. Puzzle pieces. The Green function gc : C→ [0,+∞) is defined by

gc(z) = lim
n→+∞

1

2n
log(1 +

∣∣f◦nc (z)
∣∣).

If c ∈ [−2,−1], the filled-in Julia set Kc is connected and there is an isomorphism
φc : CrKc → CrD which conjugates fc to f0: φc ◦fc = f0 ◦φc. The Green function
satisfies gc = log |φc|. For t ∈ R/Z, the curve

Rc(t) := φ−1c
{
r ei2πt | r > 1

}
is called the external ray of angle t. The external rays Rc(±1/3) are exchanged by
fc and land at a common fixed point αc ∈ Jc, i.e.

Rc(±1/3) = Rc(±1/3) ∪ {αc}.
The polynomial fc has a second fixed point βc 6= αc. Set

Uc :=
{
gc < 1

}
r
(
Rc(1/3) ∪Rc(−1/3) ∪ {αc}

)
.

Definition 2.1 (Puzzle pieces). The puzzle pieces of depth m ≥ −2 are the con-

nected components of f
−(m+2)
c (Uc).

We shift the depths by −2 compared to the usual definition for later simplifica-
tion. In particular, the critical piece C0 of depth 0 is the domain bounded by the
external rays of angle ±1/3, the preimage rays of angle ±1/6 and the equipotential
of level 1/4.

We define the enlarged critical piece Ĉ0 as the domain bounded by the external
rays of angle ±1/12, the external rays of angle ±5/12 and the equipotential of level

1/2. Then, C0 is compactly contained in Ĉ0 (see Figure 1).

C0

Ĉ0
gc=

1
2

gc=
1
4

Rc(
1
3 )

Rc(− 1
3 )

Rc(
1
6 )

Rc(− 1
6 )

Rc(
1
12 )

Rc(− 1
12 )

Rc(
5
12 )

Rc(− 5
12 )

Figure 1: The filled-in Julia set Kc for c = z2−1.98, together with the critical piece

C0 (yellow), compactly contained in the enlarged piece Ĉ0 (light yellow).

2.2. Regular points. A regular piece P of depthm ≥ 1 is a component of f−mc (C0)

which has a neighborhood P̂ such that f◦mc : P̂ → Ĉ0 is an isomorphism (see Figure
2). A point x ∈ Jc is regular if it belongs to a regular piece. Denote by Xc ⊂ Jc
the set of regular points. Define nc : Jc → N ∪ {+∞} by

nc(x) := inf
{
n ≥ 1 | x is contained in a regular piece of depth n

}
with the convention inf ∅ := +∞, so that nc(x) is finite if and only if x ∈ Xc.
Finally, set Ic := (αc,−αc) = C0 ∩ R and define Tc : Xc → Ic by

Tc(x) := f◦nc(x)
c (x).
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Figure 2: Three regular pieces are indicated (pink and blue of depth 2, green of

depth 3). The corresponding neighborhoods mapping isomorphically to Ĉ0 are
indicated with lighter coloring.

The first step in the proof is the following dynamical result, proved in §4.

Theorem 2.2. If nc ∈ L1(Ic), then fc admits an a.c.i.m. supported on Jc.

The proof consists in first proving that when nc is finite almost everywhere,
then Tc admits an invariant measure supported on Ic, with R-analytic density.
This follows from the fact that the domain of Tc has full measure in Ic and that all
iterates of Tc have uniformly bounded distortion. Using the fact that nc is integrable
on Ic, we then promote this Tc-invariant measure on Ic to an fc-invariant measure
on Jc.

Remark 2.3. If fc is renormalizable, i.e. if there is an interval I ⊆ Ic containing
0 and an integer p ≥ 2 such that f◦p(I) = I, then nc ≡ +∞ on I and so, nc is not
integrable. Note that even in this situation, fc may admit an a.c.i.m. supported
on Jc.

Figure 3 illustrates the case of a polynomial fc for which the critical orbit is
finite:

c0 = 0 7→ c1 = c 7→ c2 = c2 + c 7→ c3 = −αc 7→ c4 = αc 7→ αc.

In that case, nc is integrable and there is an a.c.i.m. whose density is displayed.

c1 c4 = αc c3 c2

Figure 3: The density of the a.c.i.m. of a polynomial whose postcritical set is finite.
The density is unbounded on the postcritical set. When the postcritical set is dense
in Jc, the density of the a.c.i.m. is unbounded on every interval.
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2.3. Plowing in the dynamical space. We need a criterion for nc to be inte-
grable. This criterion will depend on the behavior of nc along the critical orbit. In
particular, we shall require that nc is finite on the critical orbit, so that Tc

◦j(c) is
well-defined for all j ≥ 1.

Definition 2.4 (Regularity). The polynomial fc is regular if nc is finite along the
critical orbit. In that case, for k ≥ 1, we set

Nk(c) := nc
(
Tc
◦k(c)

)
.

Definition 2.5 (Strong regularity). The polynomial fc is strongly regular if it is
regular and if for all k ≥ 1,

1

k

k∑
j=1

max
(
0,N j(c)−N0(c)

)
≤ 1

4
.

Proposition 2.6. There exist C > 0, ρ < 1 and N ≥ 1 such that if fc is strongly
regular with N0(c) ≥ N , then

∀n ≥ 1,
Leb

{
x ∈ Ic | nc(x) ≥ n

}
Leb(Ic)

≤ Cρn.

The proof of Proposition 2.6, given in §11, involves tableaux and bounding
lengths of intervals via moduli of annuli. As a corollary, we have the following
result.

Theorem 2.7. If fc is strongly regular with c ∈ [−2,−1] close enough to −2, then
fc admits an a.c.i.m. supported on Jc.

2.4. Harvesting in the parameter space. Consider the nested sequence of sub-
sets

[−2,−1] ⊃ I0 ⊃ I1 ⊃ · · · ,
defined recursively by:

• I0 :=
{
c ∈ [−2,−1] | c is regular for fc

}
and

• for ` ≥ 1, I` :=
{
c ∈ I`−1 | Tc◦`(c) is regular for fc

}
.

A parameter c ∈ I` is said to be regular of order `.
Define N ` : [−2,−1]→ N ∪ {+∞} by

N `(c) :=

{
nc
(
Tc
◦`(c)

)
if c ∈ I`

+∞ otherwise.

The functions N0, . . .N ` are locally constant on I`. The depth of a component I
of I` is

depth(I) := N0(I) + · · ·+ N `(I).

The component I is strongly regular if for all k ∈ [1, `],

1

k

k∑
j=1

max
(
0,N j(I)−N0(I)

)
≤ 1

4
.

In §13, we prove the following counterpart of Proposition 2.6 in parameter space.

Proposition 2.8. There exist K > 0, σ < 1 and N ≥ 1 such that if I is a strongly
regular component of I` with N0(I) ≥ N , then

∀n ∈
[
1,depth(I)

]
,

Leb
{
c ∈ I | N `+1(c) ≥ n

}
Leb(I)

≤ Kσn.
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2.5. A probabilistic argument. To conclude the proof of Theorem 1.1 assuming
Propositions 2.6 and 2.8, we shall use a probabilistic argument. Assume (Y, p)
is a probability space and let (Mk : Y → N)k≥1 be random variables. Given
(m1, . . . ,mk) ∈ Nk, set

Y (m1, . . . ,mk) := {y ∈ Y | M1(y) = m1, . . . ,Mk(y) = mk

}
with the convention Y (m1, . . . ,mk) = Y for k = 0. On Y (m1, . . . ,mk), consider
the conditional probabilities

p(Mk+1 = m | m1, . . . ,mk) :=
p
(
Y (m1, . . . ,mk,m)

)
p
(
Y (m1, . . . ,mk)

) ,

the conditional expectations

E(m1, . . . ,mk) :=
∑
m≥1

m · p(Mk+1 = m | m1, . . . ,mk)

and the conditional variances

V (m1, . . . ,mk) :=
∑
m≥1

m2 · p(Mk+1 = m | m1, . . . ,mk)−
(
E(m1, . . . ,mk)

)2
.

Set

E := sup
(m1,...,mk)

E(m1, . . . ,mk) and V := sup
(m1,...,mk)

V (m1, . . . ,mk).

Lemma 2.9. For all ε > 0 and η > 0, if E and V are sufficiently small, then

p
{
y ∈ Y | ∀k ≥ 1, M1(y) + · · ·+Mk(y) ≤ kε

}
≥ 1− η.

2.6. Proof of the Jakobson Theorem. According to Theorem 2.7, if N is large
enough and c is stronlgy regular with N0(c) ≥ N , then fc admits an a.c.i.m.
supported on Jc. So, it is enough to show that the set of such parameters c has
positive Lebesgue measure and that −2 is a Lebesgue density point.

For k ≥ 1, let Sk : [−2− 1]→ N ∪ {+∞} be the function defined by:

Sk :=


k∑
j=1

max(0,N j −N0) on Ik

+∞ outside Ik.

Then, c ∈ [−2,−1] is strongly regular if and only if Sk(c) ≤ k/4 for all k ≥ 1.
Given n0 ≥ 1, set

Y :=
{
c ∈ [−2, 1] | N0(c) = n0

}
and p :=

Leb

Leb(Y )
.

The sets

Yk :=
{
c ∈ Y ∩Ik | Sj(c) ≤ j/4 for 1 ≤ j ≤ k

}
form a nested sequence.

Consider the functions (Mk : Y → N)k≥0 defined recursively by

M0 = 0 and Mk+1(c) :=


0 if c 6∈ Yk⌊
(k + 1)/4

⌋
+ 1− Sk(c) if c ∈ YkrYk+1

Sk+1(c)− Sk(c) if c ∈ Yk+1.

Then, on the one hand, if c ∈ Yk, then Sk(c) = M1(c) + · · ·+Mk(c), so that⋂
k≥1

Yk =
{
c ∈ Y | ∀k ≥ 1, M1(c) + · · ·+Mk(c) ≤ k/4

}
.
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On the other hand, if Mk+1(c) = m ≥ 1, then c belongs to some strongly regular
component I of Ik with N0(I) = n0. In addition,

m ≤
⌊
(k + 1)/4

⌋
+ 1 ≤ k ≤N1(I) + · · ·+ Nk(I) = depth(I)− n0

and

m = Mk+1(c) ≤ Sk+1(c)− Sk(c) ≤Nk+1(c)−N0(c) = Nk+1(c)− n0.

Thus, Proposition 2.8 implies that there are constants K > 0, σ < 1 and N ≥ 1
such that if n0 ≥ N and m ≥ 1

Leb
{
c ∈ I | Mk+1(c) = m

}
Leb(I)

≤
Leb

{
c ∈ I | Nk+1(c) ≥ m+ n0

}
Leb(I)

≤ Kσm+n0 .

Since on I, the functions M0, . . . ,Mk are constant, we deduce that for m ≥ 1

p(Mk+1 = m | m1, . . . ,mk) ≤ Kσm+n0 .

It follows that

sup
(m1,...,mk)

E(m1, . . . ,mk) = O(σn0) and sup
(m1,...,mk)

V (m1, . . . ,mk) = O(σn0).

The Jakobson Theorem now follows from the probabilistic Lemma 2.9.

3. The Yoccoz puzzle

Until §12, c ∈ [−2,−1]. When the context is clear, we omit the index c: f := fc,
α := αc, . . . Puzzle pieces and their depths have been defined in the introduction
(see Definition 2.1). We shall use the following notation.

Definition 3.1. If x ∈ K and f◦(m+2)(x) 6= α, we denote by Pm(x) the puzzle
piece of depth m containing x. If f◦(m+2)(0) 6= α, we denote by Cm := Pm(0) the
critical piece of depth m.

Figure 4: The filled-in Julia set and the puzzle pieces of depth −2 through 1 for
the quadratic polynomial f(z) = z2 − 1.75.

Definition 3.2 (Good pieces). A piece P is a good piece if it maps to C−2 by an
iterate of f .
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The preimage of the critical piece C−2 has two components (see Figure 5):

S+ := P−1(β) b C−2 and S− := P−1(−β) b −C−2,
where β 6= α is the second fixed point of f . Any good piece is an iterated preimage
of S±.

S− S+

C−2

C−1

Figure 5: The pieces S± are colored green. Note that S+ is compactly contained
in C−2 which is colored yellow.

Definition 3.3 (Enlarged pieces). If P is a good piece of depth m ≥ −1 with

f◦(m+1) = S±, the enlarged piece P̂ is the connected component of f−(m+1)(±C−2)
which contains P .

A key property is that when P ( Q are good pieces, then P̂ b Q̂. For later
purposes, we will prove a stronger result.

Definition 3.4 (Thickened pieces). We denote by C̃−2 the component of{
g < 1

}
r
(
R(5/12) ∪R(−5/12)

)
which contains C−2. If P is a good piece of depth m ≥ −2, the thickened piece P̃
is the component of f−(m+2)(C̃−2) which contains P .

Ĉ0

C̃0

C0

Figure 6: The critical piece C0 (light green) contained in the enlarged Ĉ0 (yellow) for

the polynomial f(z) = z2 − 1.67. The thickened piece C̃0 is obtained by adjoining

to C0 the two dark green pieces on each side. Note that C̃0 is compactly contained

in Ĉ0.
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From now on, we assume that the critical value c is not contained in C̃−2. This
precisely occurs when f(c) = f◦2(0) > −α. In that case, the dynamical rays
R(5/24) and R(−5/24) land at a common preimage of −α.

Lemma 3.5. If Q is a good piece of depth m ≥ −1, then Q̃ b Q̂.

Proof. By definition, S̃+ is the component of f−1(C̃−2) which contains S+. Since

the critical value c is not contained in C̃−2, the thickened piece S̃+ avoid 0 and

thus, is compactly contained in Ŝ+ = C−2 (see Figure 7). By symmetry, we also

have S̃− b Ŝ−. Pulling back via iterates of f , we see that Q̃ b Q̂ for any good
piece Q of depth m ≥ −1. �

S+

S̃+

Ŝ+

R( 1
3 )

R(− 1
3 )

R( 5
24 )

R(− 5
24 )

R( 1
6 )

R(− 1
6 )

Figure 7: The pieces S+ (light green), S̃+ (green) and Ŝ+ (yellow). We have the

inclusions S+ ⊂ S̃+ b Ŝ+.

Lemma 3.6. If P ( Q are good pieces, then P̂ ⊂ Q̃.

Proof. Let us say that a good piece P is consecutive to a good piece Q when P ( Q
and there is no good piece P ′ with P ( P ′ ( Q. Clearly, it is enough to prove
the property when P is consecutive to Q. We prove it by induction on the depth
m ≥ 0 of Q. For m = 0, note that there are only two good pieces consecutive to
C−2: the piece S+ and the critical piece C0. On the one hand, by definition,

Ŝ+ = C−2 ⊂ C̃−2.

On the other hand (see Figure 8),

Ĉ0 = f−1(−C−2) ⊂ C̃−2.

This proves that the property holds for m = 0. Now, if the property holds for some
m ≥ 0, pulling back via f shows that it holds for m+ 1. �

4. Regular points

In this section, we prove Theorem 2.2. We first recall the definitions given in the
introduction.
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C0

Ĉ0

C−2
C̃−2

Figure 8: The enlarged piece Ĉ0 (yellow) containing C0 (light yellow) is contained

in the enlarged piece C̃−2 (green) containing C−2 (light green).

Definition 4.1 (Regular pieces and points). A piece P of depth m ≥ 1 is regular
if

f◦m(P) = C0 and f◦m : P̂ → Ĉ0 is an isomorphism.

The piece is maximally regular if it is not contained in a regular piece of smaller
depth. A point x ∈ J := [c, c2 + c] is regular if it belongs to some regular piece. We
denote by X the set of regular points.

The function n : J → N is defined by

n(x) := inf
{
m ≥ 1 | x is contained in a regular piece of depth m

}
with the convention inf ∅ = +∞. Recall that I := (α,−α). The map T : X → I is
defined by

T (x) := fn(x)(x).

We now prove Theorem 2.2 which asserts that if n ∈ L1(I), then f admits an
a.c.i.m. supported on J .

c1 c5 c0 c4 c7 c3 c6 c2

Figure 9: The graph of the function J 3 x 7→ µ
(
[c, x]

)
∈ [0, 1] for c ' −1.95. The

graph has vertical tangents on one side at each point of the postcritical set. The
first seven iterates of the critical point are marked in red.
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Proof of Theorem 2.2. First, if P is a regular piece of depth m, then f◦m : P̂ → Ĉ0
is an isomorphism and the inverse branch gP : Ĉ0 → P̂ has uniformly bounded
distortion on C0.

Second, since two puzzle pieces are either nested or disjoint, the maximally
regular pieces are pairwise disjoint. Let R be the set of maximally regular pieces
contained in C0 and set

V :=
⊔
P∈R
P .

Note that V ∩ I is the set of regular points in I. By assumption, n is integrable on
I, and so, the complement of V in I is a set of Lebesgue measure zero. In addition,
the function n is constant on each interval P ∩ I. We set nP := n(P ∩ I) and
consider the dynamical system T : V → C0 defined by

T |P := f◦nP for P ∈ R.

Third, we control the distortion of iterates of T as follows.

Lemma 4.2. There exists a constant C such that for any k ≥ 1 and each component
P of T−k(C0), we have that

sup
z∈P

∣∣(T ◦k)′(z)
∣∣ ≤ C · inf

z∈P

∣∣(T ◦k)′(z)
∣∣ and sup

z∈P

1∣∣(T ◦k)′(z)
∣∣ ≤ C · Leb(P ∩ R)

Leb(I)
.

Proof. We first prove by induction on k that any component P of T−k(C0) is a
regular piece. This is true for k = 1 by definition. Assume k ≥ 2 and P is a
component of T−k(C0). Then it is a good piece of depth m ≥ 1. It is contained in
the domain of T , i.e. in a regular pieceQ ∈ R of depth n ≥ 1. According to Lemmas

3.5 and 3.6, P̂ b Q̂. So, f◦n is univalent on P̂ . In addition, T (P) = f◦n(P) is

regular by induction hypothesis, so that f◦(m−n) is univalent on f◦n(P̂). Thus,

f◦m is univalent on P̂ , which shows that P is regular.
As a consequence, T ◦k : P → C0 is an isomorphism whose inverse extends

univalently to Ĉ0. In particular the distortion of T ◦k on P is uniformly bounded

on P by a constant C which only depends on the modulus of the annulus Ĉ0 − C0.
This proves the first inequality. The second inequality follows immediately. �

Fourth, we can define a sequence of measures νk supported on I as follows. Given
k ≥ 1 and z ∈ T−k(C0), let P(z) be the component of T−k(C0) containing z and
let εk(z) ∈ {−1,+1} be the sign of the derivative of T ◦k on P(z) ∩ R. According
to the previous lemma, there is a constant C such that for all k ≥ 1, the series

hk(y) :=
∑

x∈T−k(y)

εk(x)

(T ◦k)′(x)

is uniformly convergent and bounded by C for y ∈ C0. In particular, it defines a
function hk which is holomorphic on C0. The restriction of this function to I is the
density of the measure νk defined on I by

νk = (T ◦k)∗ Leb .

Since n is integrable, it is finite almost everywhere and so, V ∩I has full measure in
I. The points which escapes from V∩I under iteration of T form a countable union
of sets of measure zero, thus a set of measure zero. It follows that T−k(C0)∩ I has
full measure in I and the total mass of νk is

‖νk‖ = Leb
(
T−k(C0) ∩ I

)
= Leb(I).
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Now, since the functions hk are uniformly bounded by C on C0, any weak limit
ν of the Cesaro average

ν̄k :=
1

k

k∑
j=1

νj

is a measure with analytic density. It is clearly invariant by T since

T∗ν̄k +
ν1
k

= ν̄k +
νk+1

k
.

We finally promote this measure ν which is invariant by T , into a measure µ
which is invariant by f . We shall define µ by its action on continuous functions.
Any continuous function φ on J , may be pulled back to a function S(φ) defined on
I by

S(φ)(x) =

n(x)−1∑
n=0

φ
(
f◦n(x)

)
.

This function is integrable on I since n is integrable on I and since for x ∈ I,∣∣S(φ)(x)
∣∣ ≤ n(x) · ‖φ‖∞.

We define µ by ∫
J

φ dµ :=

∫
I

S(φ) dν.

This defines a positive linear functional on the continuous functions on J and thus a
measure on J . The formula defining µ extends to characteristic functions of Borel
sets, which shows that it is absolutely continuous with respect to the Lebesgue
measure: if A has Lebesgue measure zero, then S(1A) vanishes outside a set of
Lebesgue measure zero, and so,∫

J

1A dµ =

∫
I

S(1A) dν = 0.

The total mass of µ is ∫
J

1 dµ =

∫
I

n dν.

It is invariant by f since

S(φ ◦ f) = S(φ) + φ ◦ T − φ and ν is invariant by T. �

5. Tableaux

To encode and represent the dynamics between puzzle pieces, we will use the
notion of tableaux.

Definition 5.1 (Critical, semi-critical and off-critical pieces). A good piece P is
critical if 0 ∈ P ,
semi-critical if 0 ∈ P̂rP and

off-critical if 0 6∈ P̂ .

Definition 5.2 (Tableaux). The tableau of a point x ∈ Kc is an array with one
column associated with each xn := f◦n(x) and one row associated to each depth m
in the Yoccoz puzzle. The position (m,n) on the m-th row downwards and the n-th
column to the right, is marked if Pm(xn) is a good piece and unmarked otherwise. It
is critical (respectively semi-critical, off-critical) if Pm(xn) is critical (respectively
semi-critical, off-critical). The k-th diagonal in a tableau is the set of positions
(m,n) such that m+ n = k.

A position is represented by
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• a black disk if it is critical,
• a grey disk if it is semi-critical,
• a circle if it is off-critical,
• a dot if it is unmarked.

Figure 10: The puzzle pieces of depth −2 through 3 for f(z) = z2− 1.95. From left
to right, we marked in red c1, c5, c0 = 0, c4, c7, c3, c6 and c2, where ck := f◦k(0).

The puzzle piece P2(c7) is regular. It is colored green and the enlarged piece P̂2(c7)
is colored yellow.

upuuup
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uuepee

uupeep

upuupu
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uupepe

upupee
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upuupuu e p e p e e p e e�
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��

c0:=0 c1 c2 c3 c4 c5 c6 c7 c8 c9
C−2

C−1

C0

C1

C2

C3

C4

Figure 11: The tableau of the critical point for c = −1.95. The pieces at the origin
of each arrow are regular. For example, this is the case of the piece P2(c7) which
is colored green on Figure 10.

A position (m,n) in the tableau is regular if and only if all positions on the
diagonal starting at this position (m,n) and going north-east are off-critical, except
the position (0,m+ n) which is critical.
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The tableaux satisfy some rules. Since we are considering marked and unmarked
positions, critical, semi-critical and off-critical positions, those rules are not exactly
the same as the classical rules.

Lemma 5.3 (Rule for unmarked positions). In a diagonal of a tableau, either all
positions are marked, or all positions are unmarked. The k-th diagonal of a tableau
is unmarked if and only if the (k+ 1)-th diagonal is marked with position (0, k+ 1)
critical.

Proof. To see that in a diagonal either all positions are marked, or all positions are
unmarked, observe that a piece Pm(x) is a good piece if and only if Pm−1

(
f(x)

)
is a good piece. Thus the position (m,n) is marked if and only if the position
(m− 1, n+ 1) is marked.

Now, the k-th diagonal of the tableau is unmarked if and only if the position
(−1, k+ 1) corresponds to the unique unmarked piece of depth −1, i.e. C−1. Since
C−1 ∩K = C0 ∩K, this is the case if and only if the position (0, k+ 1) corresponds
to C0. �

According to this rule, we see that going downwards in the column of a tableau,
we cannot meet two consecutive unmarked positions. The following rule establishes
the possible configuration between marked positions in the same column. They may
or may not be separated by an unmarked position.

Lemma 5.4 (Rule for marked positions). In a column, the only possible configu-
rations between consecutive marked pieces are the following:tpt

tpt
tpd

tpt
tpd

dpd
tt tt td dd

In particular, if there are two semi-critical positions in the same column, the
difference of their depths is even and semi-critical positions alternate with unmarked
positions.

In other words, the forbidden configurations are the following:td tt pp
Proof. Every piece containing a critical piece is itself critical and every good piece
contained in an off-critical piece is itself off-critical.

If P ⊂ Q are good pieces of respective depths m and m− 1, then f◦(m+1)(Q) =
C−2 and f◦(m+1)(P) is the only good piece of depth −1 contained in C−2, i.e.

f◦(m+1)(P) = S+. Since P̂ is the component of f−(m+1)(C−2) containing P , we

have P̂ = Q. Thus, if Q is critical, then P̂ = Q contains the critical point and P
cannot be off-critical; and if Q is semi-critical, then P̂ = Q does not contain the
critical point and P cannot be semi-critical.

The possibility of two consecutive unmarked positions is ruled out by the previous
lemma. �

The third tableau rule relates an arbitrary tableau, to the tableau of the critical
point (see Figure 12).

Lemma 5.5 (Rule for critical positions). If in the tableau the position (m,n) is
critical, then for −2 ≤ m′ ≤ m and 0 ≤ n′ ≤ m′ + 2, the position (m′ − n′, n+ n′)
in the tableau has the same nature as the position (m′−n′, n′) in the tableau of the
critical point c0 = 0.

Proof. At each depth, there is a unique critical piece: Cm. �
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a a a a a
a a a a
a a a
a a
v v

a a a a a
a a a a
a a a
a a

(m,n)Cm �
�
�
�
�
�
�
�
��

�
�

�
�
�

�
�

�
��

c0=0

anything here copied here

Figure 12: Illustration of the rule for copying.

6. The return time n0 := n(c)

Given c ∈ [−2,−1], we define recursively a sequence (B±m)m≥0 of good pieces as
follows (see Figure 13):

• B±0 := B0 := C0 ⊂ P−2(β);
• for m ≥ 1, B±m is the component of f−1(B+

m−1) contained in Pm−2(±β).

B0:=C0

B+
1

B+
2

B−1
B−2

S− S+

Figure 13: For m ≥ 1, the puzzle piece B±m are mapped by f to B+
m−1.

Lemma 6.1. For all m ≥ 1, the pieces B±m are regular.

Proof. On the one hand, B+
m ⊂ Pm−2(β) ⊂ S+. So, according to Lemma 3.5,

B̂+
m ⊂ S̃+. On the other hand, the map f : S̃+ → C̃−2 is an isomorphism. It

follows that f : B̂+
m → B̂+

m−1 is an isomorphism. By induction on m ≥ 1, we deduce

that f◦m : B̂+
m → B̂+

0 = Ĉ0 is an isomorphism, thus B+
m is regular. By symmetry,

B−m = −B+
m is also regular. �

From now on, we assume that

c ∈ B−n0
for some integer n0 ≥ 3, so that n(c) = n0.

For m ∈ [2, n0 + 1], we let D−m be the component of f−1(B−m−1) intersecting (α, 0)
and D+

m be the component intersecting (0,−α) (see Figure 14 for c = −1.98; in
that case n0 = 4). For m = n0 + 1, we have

D+
n0+1 = D−n0+1 = Cn0+1.

The 2n0− 1 puzzle pieces D±m cover I, up to finitely many iterated preimages of α.

Remark 6.2. Note that B̂0 = Ĉ0 contains B+
1 but avoids B+

k for k ≥ 2.
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D−2 D+
2

D−3 D+
3

D−n0
D+

n0

C0

C1

Cn0+1

Cn0−2

Figure 14: For the polynomial f(z) = z2 − 1.98, n0 = 4. There are 4 maximally
regular pieces D±2 (of depth 2) and D±3 (of depth 3) colored green, 2 semi-critical
pieces D±4 (of depth 4) colored red and 1 critical piece C5 (of depth 5) colored blue.

Lemma 6.3. Assume m ∈ [2, n0 + 1]. Then, f(D±m) is regular and D±m ⊂ Cm−2.
If m ≤ n0 − 1, the pieces D±m are regular. The pieces D±n0

are semi-critical. The
piece Cn0+1 is critical.

Proof. By definition, f(D±m) = B−m−1 which is regular according to the previous
lemma. In addition, c ∈ B−n0

⊂ Pn0−2(−β) ⊆ Pm−3(−β). As a consequence,

f(Cm−2) = Pm−3(−β) contains f(D±m) = B−m−1. It follows that D±m ⊂ Cm−2.

Since B̂0 = Ĉ0 contains B+
1 but avoids B+

k for k ≥ 2, pulling back by the

isomorphism f◦m : P̃m−2(β) → C̃−2, we see that B̂+
m contains B̂+

m+1 but avoids

B+
m+k for k ≥ 2. As a consequence, for m ≤ n0 − 1, f(D̂±m) = B̂−m−1 avoids the

critical value which is contained in B−n0
and f : D̂±m → B̂−m−1 is an isomorphism.

This shows that for m ∈ [2, n0 − 1], the piece D±m are regular.

In addition, f(D̂±n0
) = B̂−n0−1 contains the critical value, so that D̂±n0

contains

the critical point and D±n0
is semi-critical. Finally, Cn0+1 is critical. �

Figures 15 shows restricted tableaux of the pieces D±m with 0 ≤ m ≤ n0 + 1. We
only show the positions (i, j) with i+ j ≤ m, i ≥ −1 and j ≥ 0.

The following lemma will be used to compare the orbits of critical and semi-
critical pieces.

Lemma 6.4. The enlarged piece D̂±2 is contained in Ŝ± = ±C−2.

Proof. Since D±2 is regular, the enlarged piece D̂±2 avoids the critical point 0 and

D̂+
2 ∩D̂−2 = ∅. The piece D−2 contains α in its boundary, so α ∈ D̂−2 and −α ∈ D̂+

2 .

In particular, D̂−2 avoids −α.
By construction, if an enlarged puzzle piece intersects an external ray, it contains

the landing point of the external ray. If D̂−2 were not contained in −C−2, it would
intersect its boundary, thus the external rays of angle ±1/6 which land at −α. This

contradicts the previous discussion. So, D̂−2 ⊂ Ŝ−, and D̂+
2 ⊂ Ŝ+ by symmetry. �
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d d d d t t

p p p p p
t d d t
t d tt tp S− S+ S+ S−

C0

Cm−2

D±m t d d d d d t

p p p p p p

t d d d t
t d d t
t d tt tp S− S+ S+ S+ S−

C0

D±n0

Cn0−2

t d d d d d t t

p p p p p p p

t d d d d t

t d d d t
t d d t
t d tt tp S− S+ S+ S+ S+ S−

C0

Cn0−1

Cn0+1

Figure 15: Left: the restricted tableau of a regular piece D±m with m ≤ n0 − 1.
Middle: the restricted tableau of a semi-critical piece D±n0

. Right : the restricted
tableau of the critical piece Cn0+1.

7. Children

We now introduce the notion of child. In this article, we only need to consider
children of the critical piece C0.

Definition 7.1 (Children). A (semi-)critical child of C0 is a (semi-)critical piece
P ⊂ C0 of depth m ≥ 1 such that f◦m(P) = C0 and f(P) is regular.

taaat d d d t

C

C0 taat d d t
Q

C0

Figure 16: Left: the critical piece C is a critical child of C0. Right: the semi-critical
piece Q is a semi-critical child of C0.

Lemma 7.2. For a given depth n ≥ 1, either

• there are no children of depth n, or
• there is a unique child of depth n, this child is critical and there are no

semi-critical pieces of depth n, or
• there are exactly two children of depth n, those children are semi-critical

and the critical piece of depth n is unmarked.

Proof. For each depth n ≥ 1, there is at most one component V̂ of f−n(Ĉ0) which
contains the critical point (see Figure 17). If there is a child at depth n, then

f◦n : V̂ → Ĉ0 is a ramified covering of degree 2. Note that C0 is the unique piece of

depth 0 contained in Ĉ0.

Either the critical value of f◦n : V̂ → Ĉ0 belongs to C0, in which case f−n(C0) is

the unique piece of depth n is V̂ ; in that case, there is a unique child at depth n,
this child is critical, and there are no semi-critical pieces of depth n.

Or the critical value of f◦n : V̂ → Ĉ0 belongs to B±1 , in which case f−n(C0) has

exactly two components in V ; those are the only pieces of depth n contained in V̂ ;
in that case, there are two children at depth n, those children are semi-critical and
the critical piece of depth n is unmarked. �
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C0

Ĉ0

C

Ĉ

Q̂−=Q̂+

Q− Q+

Figure 17: Right: the critical piece C0 (green) surrounded by Ĉ0 (yellow). The
pieces B±1 are indicated (light yellow). Top left: two semi-critical children Q± of

C0 of depth m = 4 (green) surrounded by the appropriate component of f−m(Ĉ0)
(yellow). The preimages of B±1 are indicated (light yellow). One of them contains
the critical point. Bottom left: a critical child C of C0 of depth m + 1 (green)

surrounded by the appropriate component of f−(m+1)(Ĉ0) (yellow). The preimages
of B±1 are indicated (light yellow).

Lemma 7.3. Let (Pk)1≤n≤m be a nested sequence of pieces of depth n. Assume
Pm and Pm′ are semi-critical with m′ < m. Then, m −m′ is even and if Pm′ is
a semi-critical child of C0, then for n ∈ [0,m−m′] even, Pm′+n is a semi-critical
child of C0.

Proof. Consider the restricted tableau of Pm. By assumption, the positions (m, 0)
and (m′, 0) are semi-critical. According to the rule for marked positions (Lemma
5.4), m−m′ is even, positions (m′+n, 0) with n even are semi-critical, and positions
(m′+n, 0) with n odd are unmarked. According to the rule for unmarked positions
(Lemma 5.3), when n is odd the position (0,m′ + n) is unmarked and the position

(0,m′+n+1) is critical. In particular, if n ∈ [2,m−m′] is even, f◦(m
′+n)(Pm′+n) =

C0 and f◦(m
′+n−2)(Pm′+n) is a piece contained in C0 which maps by f◦2 to C0. Such

a piece is necessarily D±2 . So, we have the following tableau:

spspsps

c c s
c c s

c c s
c c c s

p p p p p p p p p

p p p p p p p
p p p p p

Pm′

Pm

D±2 D±2 D±2

C0 C0 C0 C0

For n ∈ [0,m−m′] even, Pm′+n is a semi-critical child of C0. �
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Lemma 7.4. Assume Cn is a critical child of C0, and P 6⊂ Cn is semi-critical of
depth m ≥ n + 3. Then, the piece of depth n + 3 containing P is a semi-critical
child of C0.

Proof. First, note that the piece of depth n containing P is not critical by assump-
tion. According to Lemma 7.2, it cannot be semi-critical since there is a critical
child of C0 at depth n. So, it is unmarked.

As in the proof of the previous lemma, it follows from the tableaux rules for
unmarked and for marked positions (Lemmas 5.3 and 5.4) that m − n is odd and
we have the following restricted tableau:

p p p p

tptptpt

d d tt

p p p p p
depth n

depth n+3 Q

P

D±2

C0

�
�

�
�

���

f◦(n+1)

In particular, if Q is the semi-critical piece of depth n + 3 containing P , then

f◦(n+1)(Q) = D±2 . By assumption, Q̂ ⊃ P̂ contains the critical point, thus Q̂ in-

tersects Cn. As a consequence, f◦(n+1)(Q̂) intersects S− = f◦(n+1)(Cn). According

to Lemma 6.4, D̂±2 ⊂ Ŝ±. Thus, D̂+
2 ⊂ Ŝ+ = C−2 avoids S− and

f◦(n+1)(Q̂) = D̂−2 ⊂ Ŝ− = f◦(n+1)(Ĉn).

In addition, Q̂ is the component of f−(n+1)(D̂−2 ) containing 0, so Q̂ ⊂ Ĉn. In

particular, f◦(n+1) : Q̂ → D̂−2 is a ramified covering of degree 2 and Q is a semi-
critical child of C0. �

8. Singular pieces

Definition 8.1 (Singular pieces). A piece P is singular if P ⊆ C0 is not contained
in a regular piece. We denote by Sm the set of singular pieces of depth m ≥ 0.

Note that S0 = {C0}. In addition, if P ⊂ Q are puzzle pieces and P is singular,
then Q is also singular. The converse is not true: Q may be singular and P regular.

Also, note that for x ∈ I, we have n(x) ≥ m precisely when x is an iterated
preimage of α or when x ∈ P ∈ Sm−1. Since the set of iterated preimages of α is
countable, therefore of measure 0, we have∫

I

n =
∑
m≥0

∑
P∈Sm

Leb(P ∩ R)

and to prove that n is integrable, we must prove that this series is convergent.
In this section, we show that for n0 ≥ 2,

card(Sm) ≤ 3 · (2n0)m/n0 .

Later, we will control Leb(P ∩ R) for P ∈ Sm.
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Proposition 8.2. For n0 ≥ 2, the number Sm of singular pieces of depth m is
bounded from above by 3 · (2n0)m/n0 .

Proof. The proof goes by induction on m ≥ 1. We first prove that the property
holds for m ≤ n0. Since S0 = {C0}, S0 = 1.

Lemma 8.3. For m ∈ [1, n0], Sm = 3. The three singular pieces of depth m are
contained in Cm−1. One of them is Cm. The other two are the pieces of depth m
containing D±m+1.

Proof. A singular piece of depth m ∈ [1, n0− 1] cannot be contained in the regular
pieces D±k with k ∈ [2,m]. So, it is contained in Cm−1 (see Figure 14). Since Cm
and D±m+1 cover Cm−1 ∩ I up to 2 points, there are exactly three pieces of depth m

contained in Cm−1: Cm and the two pieces of depth m containing D±m+1.
Similarly, a singular piece of depth n0 cannot be contained in the regular pieces

D±k with k ∈ [2, n0 − 1]. So, there are three singular pieces of depth n0: Cn0
and

the two pieces D±n0
. �

This shows that there are exactly Sm = 3 ≤ 3·(2n0)m/n0 singular pieces of depth
m ∈ [1, n0].

Lemma 8.4. Every singular piece of depth m ≥ n0+1 is contained in Cn0+1∪D±n0
.

Proof. The pieces D±k with k ∈ [2, n0] cover I up to finitely many preimages of
α. For k ≤ n0 − 1, they are regular pieces. So, if P is a singular piece of depth
m ≥ n0 + 1, then P is contained in D±n0

or in D±n0+1 = Cn0+1. �

We now proceed by induction on m ≥ n0 +1. This requires the following lemma.
If P is contained in a child of C0, the deepest child containing P is the one with
largest depth.

Lemma 8.5. Assume P is a singular piece of depth m ≥ n0. Let n ≥ n0 be the
depth of the deepest child of C0 containing P . Then,

• either m = n and P is a child of C0,
• or f◦n(P) ⊂ C0 is a singular piece of depth m− n ≥ 1.

Proof. If m = n or f◦n(P) is singular, there is nothing to prove. So, let us assume
that m > n > 2 and that f◦n(P) is not singular. Then, f◦n(P) is contained in a
regular piece P ′ of depth k ∈ [1,m− n]. Let Q be the piece of depth n containing
P and let Q′ ⊂ Q be the piece of depth n+ k containing P . Then f(Q′) is regular
(see Figure 18). However, t

d d d t
d d taaaaaaa

a
aC0

Q

Q′

P

P ′

f◦n(P)

Figure 18: Illustration for the proof of Lemma 8.5

• Q′ cannot be off-critical since it would be regular, contradicting the fact
that P is singular;
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• Q′ cannot be critical or semi-critical since it would be a child of C0 con-
taining P , contradicting the fact that Q is the deepest such child. �

If P ∈ Sm with m ≥ n0 + 1, then P is contained either in the semi-critical
children D±n0

or in the critical child Cn0+1. Thus, either P is a child of C0, or there
is a deepest child Q of depth n ∈ [n0,m] containing P and f◦n(P) ∈ Sm−n. For
each n ≥ n0, there is either

• no child of depth n, or
• one critical childQ and each piece of depth m−n has at most two preimages

in Q by f◦(m−n), or
• two semi-critical children Q± and each piece of depth m−n has one preim-

age in Q+ and one preimage in Q− by f◦(m−n).

It follows that

Sm ≤
m∑

n=n0

2Sn−m.

By induction hypothesis, we have

Sm ≤
m∑

n=n0

3 · 2 · (2n0)(m−n)/n0 = 3 · (2n0)m/n0 ·
+∞∑
n=n0

2 · (2n0)−n/n0

= 3 · (2n0)m/n0 · 1

n0 ·
(
1− (2n0)−1/n0

)
≤ 3 · (2n0)m/n0

as soon as n0 ≥ 2. �

9. Weights, heights and lengths

We will need to bound the diameters of puzzle pieces from above. This will
be done using arguments based on moduli of annuli. More precisely, according to
[BDH], for any piece P contained in C0,

Leb(P ∩ R)

Leb(C0 ∩ R)
< exp

(
−2π

(
modulus(C0rP)− 1

2

))
.

Thus, our goal is to bound from below the modulus of the annulus C0rP . We will
introduce the notion of height of a piece, with the property that

modulus(C0rP) ≥ height(P) ·modulus
(
Ŝ±rclosure(S̃±)

)
.

Our work will consist in finding lower bounds for heights of pieces. More precisely,
under appropriate assumptions, the height of singular pieces increases linearly with
respect to their depth, so that their diameter decreases geometrically with respect
to their depth.

Definition 9.1 (Surrounding annulus). If P is a good piece, we set

A(P) := P̂rclosure(P̃).

According to Lemma 3.5, if P is a good piece, then A(P) is an annulus. In
addition, if (Pn)1≤n≤m are good pieces with P1 b C0, Pm = P and Pn+1 ( Pn,
then the annuli A(Pn) are disjoint and essentially embedded in C0rP . It follows
from the Grötzsch Inequality that

modulus
(
C0rP

)
≥

m∑
n=1

modulus
(
A(Pn)

)
.
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Recall that if P is a good piece of depth m ≥ 0, then f◦(m+1)(P) = S±. Note
that A

(
S−
)

= −A
(
S+
)
, so that both annuli have the same modulus

m := modulus
(
A(S±)

)
.

Also note that A(S±) contains no critical value of f◦(m+1) : P̂ → Ŝ± if and only
if f◦(m+1) : A(P)→ A(S±) is a covering map. In this case

modulus
(
A(P)

)
=

m

d
,

where d is the degree of f◦(m+1) : A(P)→ A(S±).
This discussion motivates the following definitions.

Definition 9.2 (Excellent pieces). A piece P of depth m is excellent if it is a good
piece and if f◦(m+1) : A(P) → A(S±) is a covering map. In that case, deg(P) is
the degree of this covering map.

Note that the degree of an excellent piece is always a power of 2.

Definition 9.3 (Weight). Let P be a piece of depth m. We set

weight(P) :=

{
1/deg(P) if P is an excellent piece,

0 otherwise.

Definition 9.4 (Height). If P ⊂ C0 is a piece of depth m ≥ 0, we set

height(P) :=

m∑
n=1

weight(Pn), where Pn is the piece of depth n containing P .

As mentioned previously, it follows from the Grötzsch Inequality that for any
piece P b C0,

modulus(C0rP) ≥ m · height(P)

and so,

(1)
Leb(P ∩ R)

Leb(C0 ∩ R)
≤ eπ ·λheight(P) with λ := e−2πm .

We will now control the heights of the critical pieces Cm with m ≤ n0 + 1 and
D±m with m ≤ n0 (see Figure 19).

A(C2)

A(C1)
A(C0)

Figure 19: For the polynomial f(z) = z2 − 1.99, n0 = 4 and for 0 ≤ m ≤ 3 the
annuli A(Cm) cover A(S±) with degree 2. They all surround the critical piece
Cn0+1 (blue).
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Lemma 9.5. For m ∈ [0, n0 + 1], we have the following weights and heights:

m 0 1 [2, n0 − 1] n0 n0 + 1
weight(Cm) 1/2 1/2 1/2 0 1/4
height(Cm) 0 1/2 m/2 0 n0/2− 1/4
weight(D±m) 1/2 0
height(D±m) m/2− 1/2 n0/2− 1

Proof. See Figure 20 (compare with Figure 15). �

d d d d t t
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t d d t
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Cm−2
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t d d d t
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1
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1
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1
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1
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1
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1
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C0

Cn0−1

Cn0+1

Figure 20: Left: the restricted tableau of the pieces D±m for m ≤ n0 − 1. Middle:
the restricted tableau of the semi-critical pieces D±n0

. Right: the restricted tableau
of the critical piece Cn0+1. The relevant weights are indicated to the right of the
positions.

10. Regular maps

Definition 10.1 (Regular map). A map f is regular of order ` ≥ 1 if C0 has at
least ` critical children.

Assume f is regular of order `, and let m1 < m2 < · · · < m` be the depths of
the critical children of C0. Then, m1 = n0 + 1 and for k ∈ [1, ` − 1], the point
cmk

:= f◦mk(0) belongs to a maximally regular piece of depth nk := mk+1 −mk.

ttttpt

dddpd

ddpd
dpd

pd ttpd
dpd

pd tttptptpd

ddpdpdpd

dpdpdpd

pdpdpd

tpdpd

pdpd
tpd

pd ttpd
dpd

pd tC0

Cm1

Pn0
(c)

cm1

Pn1
(cm1

)

cm2

Pn2
(cm2

)

cm3

Pn3
(cm3

)

cm4

Figure 21: An example of tableau for a regular map of order 4. The pieces Pnj
(cmj

)
are regular pieces.

The critical piece C0 does not contain regular pieces of depth n0 or n0 +1. Thus,
for k ≥ 1,

• either 2 ≤ nk ≤ n0 − 1,
• or nk ≥ n0 + 2.
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The parameters c we shall consider are parameters for which f is regular to any
order ` ≥ 1 and for which the sequence of depths {nk}k≥0 does not increase too
fast in the following sense.

Definition 10.2. A map is strongly regular of order ` ≥ 1 if it is regular of order
` and if

for all k ∈ [1, `],

k∑
j=1

max(0, nj − n0) ≤ k

4
.

The map is strongly regular if it is strongly regular of any order ` ≥ 1.

The proof of the following key estimate is rather technical.

Proposition 10.3. If f is strongly regular of order ` ≥ 1 with n0 ≥ 7, then

for all P ∈ Sm with m ∈ [1,m`], height(P) ≥ m− 1

16
.

Proof. We shall first control the heights of critical children.

Lemma 10.4. For all k ∈ [1, `],

height(Cmk
) ≥ n0 + 3

4
+

3mk

32
.

Since 3/32 > 1/16, this shows that

height(Cmk
) ≥ mk

16
≥ mk − 1

16
.

But we will need the better estimate of the lemma for the height of critical children
in order to control the height of other singular pieces.

Proof. According to Lemma 9.5 and since m1 = n0 + 1,

height(Cm1
) =

n0
2
− 1

4
=
n0 + 3

4
+

3m1

32
+

5n0 − 35

32︸ ︷︷ ︸
≥0

≥ n0 + 3

4
+

3m1

32
.

For k ∈ [1, `− 1], according to Lemma 9.5 and as indicated in Figure 22:

• either nk ≤ n0 − 1, for n ∈ [mk + 1,mk+1 − 2], f◦mk(Cn) is a critical piece
of weight 1/2 and Cn has weight 1/4,
• or nk ≥ n0 + 2, for n ∈ [mk + 1,mk + n0 − 2], f◦mk(Cn) is a critical piece

of weight 1/2 and Cn has weight 1/4.

In addition, Cmk+1
has weight 1/4.

As a consequence,

height(Cmk+1
) ≥ height(Cmk

) +

{
(nk − 1)/4 if nk ≤ n0
(n0 − 1)/4 if nk ≥ n0.

= height(Cmk
) +

nk − 1

4
− max(0, nk − n0)

4
.

Thus, for all k ∈ [1, `− 1],

height(Cmk+1
) ≥ height(Cm1

) +
∑

1≤j≤k

nj − 1

4
−
∑

1≤j≤k

max(0, nk − n0)

4

≥ n0
2
− 1

4
+
mk+1 −m1

4
− 5k

16
.
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Figure 22: The critical pieces Cmk
and Cmk+1

are consecutive critical children. Left:
nk ≤ n0 − 1. Right: nk ≥ n0 + 2. The relevant weights are indicated to the right
of each position.

Since nk ≥ 2, we have that mk+1 −m1 ≥ 2k, and so

height(Cmk+1
) ≥ n0

2
− 1

4
+
mk+1 −m1

4
− 5(mk+1 −m1)

32

=
n0
2
− 1

4
+

3(mk+1 − n0 − 1)

32

=
n0 + 3

4
+

3mk+1

32
+

5n0 − 35

32︸ ︷︷ ︸
≥0

≥ n0 + 3

4
+

3mk+1

32
. �

We may now prove by induction on m ∈ [1,m`] that height(P) ≥ (m − 1)/16
for P ∈ Sm. The induction hypothesis trivially holds for m = 1. So, let us assume
that P ∈ Sm with m ∈ [2,m`]. For n ∈ [1,m], let Pn be the piece of depth n
containing P .

Case 1. P 6⊂ Cn0+1 ∪ D±n0
, then m ∈ [2, n0] and according to Lemma 8.3, P ⊂

Cm−1. According to Lemma 9.5,

height(P) ≥ height(Cm−1) =
m− 1

2
≥ m− 1

16
.

Case 2. P ⊂ D±n0
. Let m? ∈ [n0,m] be the largest integer such that Pm?

is
semi-critical. For n ∈ [1, n0 − 2], all pieces are critical with weight 1/2. According
to Lemma 7.3, m?− n0 is even and if n ∈ [n0,m?] is such that n− n0 is even, then
the piece Pn is a semi-critical child of C0. Except Pm? which may have weight 0,
those semi-critical children have weight 1/4. If n ∈ [m? + 1,m], the piece Pn is
either unmarked or off-critical. In both cases weight(Pn) = weight(P ′n−m?

), where
P ′n−m?

:= f◦m?(Pn) is the piece of depth n−m? containing P ′ := f◦m?(P). The
situation is illustrated on Figure 23. It follows by induction that
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Figure 23: The situation when P ∈ D±n0
.

height(P) ≥ n0 − 2

2
+
m? − n0

8
+ height(P ′)

≥ n0 − 2

2
+
m? − n0

8
+
m−m? − 1

16

=
m− 1

16
+
m?

16
+

6n0 − 9

16︸ ︷︷ ︸
>0

≥ m− 1

16
.

Case 3. P ∈ Cn0+1. Either P is a critical child of C0 and the result is already
proven by Lemma 10.4. Or there is a largest integer k ∈ [1, ` − 1] such that
P ∈ Cmk

rCmk+1
. For n ∈ [1,m], let Pn be the piece of depth n containing P . Let

m? ∈ [mk,m] be the largest integer such that Pm?
is critical or semi-critical. Our

study will depend on the value of m?.

Case 3.a. m? ≤ mk+1 + 2. Fix n ∈ [mk + 1,m] and let P ′n−mk
:= f◦mk(Pn)

be the piece of depth n − mk containing P ′ := f◦mk(P). Note that the weight
of any piece P ′j is at most 1/2, since otherwise, P ′j would map isomorphically to

S± whose boundary intersects R in a single point ∓α, whereas the boundary of
P ′j ⊂ C0 intersects R in two points. It follows that

weight(Pn) = 1
2weight(P ′n−mk

) ≥ weight(P ′n−mk
)− 1

4 for n ∈ [mk + 1,m? − 1],

weight(Pm?
) ≥ 0 ≥ weight(P ′m?−mk

)− 1
2 for n = m?

weight(Pn) = weight(P ′n−mk
) for n ∈ [m? + 1,m].

Thus,

height(P) ≥ height(Cmk
) + height(P ′)− m? −mk − 1

4
− 1

2

= height(Cmk
) + height(P ′)− m? −mk + 1

4
.
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Since f is strongly regular, nk − n0 ≤ k/4 ≤ mk/8. So,

m? −mk + 1 ≤ mk+1 −mk + 3 = nk + 3 ≤ n0 + 3 +
mk

8
.

According to Lemma 10.4 and the induction hypothesis applied to P ′ whose depth
is m? −mk,

height(P) ≥ n0 + 3

4
+

3mk

32
+
m−mk − 1

16
− n0 + 3

4
− mk

32
=
m− 1

16
.

Case 3.b. m? ≥ mk+1 + 3. Since P is not contained in Cmk+1
, for n ∈ [mk+1,m?],

the pieces Pn are either unmarked or semi-critical. According to Lemma 7.2, the
piece Pmk+1

cannot be semi-critical, thus it is unmarked. It follows from the rule for
marked positions (Lemma 5.4) that for n ∈ [mk+1 +1,m?] with m−mk+1−1 even,
the piece Pn is semi-critical. According to Lemma 7.4, if in addition n ≥ mk+1 +3,
the piece Pn is a semi-critical child of C0, thus has weight 1/4 except possibly
for Pm? which may have weight 0. There are (m? −mk+1 − 3)/2 such pieces. If
n ∈ [m? + 1,m], the piece Pn is either unmarked or off-critical. In both cases
weight(Pn) = weight(P ′n−m?

), where P ′n−m?
:= f◦m?(Pn) is the piece of depth

n−m? containing P ′ := f◦m?(P). Thus,

height(P) ≥ height(Cmk
) +

m? −mk+1 − 3

8
+ height(P ′)

≥ n0 + 3

4
+

3mk

32
+
m? −mk − nk − 3

8
+
m−m? − 1

16

=
n0
4

+
3

8
− mk

32
+
m?

16
− nk

8
+
m− 1

16
.

Since f is strongly regular, nk − n0 ≤ k/4 ≤ mk/8 and

height(P) ≥ n0
8

+
3

8︸ ︷︷ ︸
>0

+
m?

16
− 3mk

64︸ ︷︷ ︸
>0

+
m− 1

16
≥ m− 1

16
. �

11. Plowing in the dynamical space

We are now ready to prove Proposition 2.6. We must prove that there exist
C > 0, ρ < 1 and N ≥ 1 such that if f is strongly regular with n0 ≥ N , then

∀n ≥ 1,
Leb

{
x ∈ I | n(x) ≥ n

}
Leb(I)

≤ Cρn.

Proof of Proposition 2.6. Assume f is strongly regular with n0 ≥ 7. According to
Proposition 10.3, if P ∈ Sm with m ≥ 0, then

height(P) ≥ m− 1

16
,

so that, according to equation (1),

Leb(P ∩ R)

Leb(C0 ∩ R)
≤ eπ ·λ(m−1)/16 with λ := e−2πm < 1.

According to Proposition 8.2, there are at most 3 · (2n0)m/n0 singular pieces of
depth m ≥ 0. Choose N sufficiently large so that ρ := λ1/16 · (2N)1/N < 1.

Then, if n0 ≥ N and n ≥ 1,

Leb
{
x ∈ I | n(x) ≥ n

}
Leb(I)

=
∑

P∈Sn−1

Leb(P ∩ R)

Leb(C0 ∩ R)
≤ Cρn

with

C :=
3 eπ

(2N)1/Nλ1/8
. �
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12. Parapuzzle

To transfer the dynamical estimates to the parameter space, we shall use the
Yoccoz parapuzzle. The definitions given in the introduction for c ∈ [−2,−1]
generalize to c ∈ C as follows.

12.1. The parapuzzle in the 1/2-wake. For c ∈ C, denote by Kc the filled-in
Julia set of fc, i.e. the set of points z ∈ C with bounded orbit under iteration of
fc. The Green function gc : C→ [0,+∞) is defined by

gc(z) = lim
n→+∞

1

2n
log(1 +

∣∣f◦nc (z)
∣∣).

It vanishes precisely on Kc and satisfies gc ◦ fc(z) = 2gc(z). The Mandelbrot set is
the set

M :=
{
c ∈ C | gc(c) = 0

}
.

The Böttcher coordinate φc which conjugates fc to f0 in a neighborhood of ∞
extends as a conformal representation

φc :
{
z ∈ C | gc(z) > gc(0)

}
→
{
z ∈ C | log |z| > gc(0)

}
.

In particular, if c ∈ CrM , φc(c) is well defined since gc(c) = 2gc(0) > 0. It is well
known that the map

Φ : CrM 3 c 7→ φc(c) ∈ CrD

is a conformal representation. For t ∈ R/Z, the parameter ray of angle t is

R(t) := Φ−1
{
r ei2πt | r > 1

}
.

The parameter rays R(1/3) and R(2/3) land at c = −3/4. The 1/2-wake W is the
connected component of Cr

(
R(1/3)∪R(2/3)∪ {−3/4}

)
which contains [−2,−1].

For c ∈ W , the dynamical rays Rc(1/3) and Rc(2/3) land at a common repelling
fixed point αc – those rays are defined as the gradient lines of gc stemming from
infinity with angle 1/3 and 2/3 (measured via the Böttcher coordinate). Set

Uc =
{
z ∈ C | gc(z) < 1

}
r
(
Rc(1/3) ∪Rc(2/3) ∪ {αc}

)
.

For m ≥ −2, set

Um =
{
c ∈ W | f◦(m+2)

c (c) ∈ Uc
}
.

The parapuzzle pieces of depth m are the connected components of Um. If c ∈ U−2
and m ≥ −2 are such that f

◦(m+2)
c (c) ∈ Uc, there is a parapuzzle piece of depth

m which contains the parameter c. We denote it by Pm(c). Since f−1c (Uc) ⊂ Uc,
we see that f

◦(m+2)
c (c) ∈ Uc as soon as f

◦(m+3)
c (c) ∈ Uc. It follows that parapuzzle

pieces are either disjoint or nested: Pm+1(c) ⊂ Pm(c) for all m ≥ −2. Figure 24
shows the parapuzzle pieces of depth −2 through 3.

12.2. The dynamical puzzle. In the introduction, we only defined the dynamical
puzzle for c ∈ [−2,−1]. The definition generalizes for parameters c ∈ U−2: the

puzzle pieces of depth m are the connected components of f
−(m+2)
c (Uc). We denote

by Puzzlem(c) the set of puzzle pieces of depth m for fc.

If x ∈ f
−(m+2)
c (Uc), we denote by Pm,c(x) ∈ Puzzlem(c) the puzzle piece of

depth m which contains x. We set Cm,c := Pm,c(0). Again, two puzzle pieces are
either nested or disjoint. Figure 25 shows the puzzle pieces of depth −2 through 3
for a polynomial fc with disconnected Julia set.
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M

R( 1
3 )

R(− 1
3 )

U−2

Figure 24: The Mandelbrot set and the parapuzzle pieces of depth −2 through 3
in the 1/2-wake. The set U−2 is colored yellow.

Rc(
1
3 )

Rc(− 1
3 )

Rc(
1
6 )

Rc(− 1
6 )

{gc=1}

Figure 25: The puzzle of depths −2 through 3 for fc(z) = z2 − 2 + i/2. The Julia
set is not connected. The puzzle piece of depth 0 containing the critical value c is
colored yellow.

12.3. Boundaries of puzzle pieces. We are interested in showing that when c
varies in a parapuzzle piece of depth m ≥ −2, the boundaries of the dynamical
puzzle pieces of depth n ∈ [−2,m+ 1] vary holomorphically. Those boundaries are
composed of equipotentials, external rays and their landing points. According to
the λ-Lemma of Mañe-Sad-Sullivan, it is enough to prove that the equipotentials
and external rays vary holomorphically. This is the case if and only if they do not
bifurcate on an iterated preimage of the critical point.

For c ∈ W ∪ {0}, let Gc be the union of the external rays of angles in ±1/3 and
the equipotentials of levels 2k, k ≥ 0. For m ≥ −2, set

Gmc := f−(m+2)
c (Gc) and Gm := Φ−1(Gm0 ).
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Then, fc(Gc) ⊂ Gc, and for m ≥ 0, fc(Gmc ) ⊂ Gmc = fc(Gm+1
c ). Moreover, c ∈ Gm

if and only if c ∈ Gmc . In addition, for c ∈ U−2, the closure of Gmc contains the
boundaries of puzzle pieces of depth m ≥ −2; and the closure of Gm contains the
boundaries of the parapuzzle pieces of depth m ≥ −2.

We say that the graph Gmc bifurcates if it contains an iterated preimage of 0.

Lemma 12.1. As c varies in a parapuzzle piece of depth m ≥ −2, the graph Gm+1
c

does not bifurcate.

Proof. Assume Gm+1
c bifurcates. Since fc(Gm+1

c ) ⊂ Gm+1
c , 0 ∈ Gm+1

c . It follows

that f
◦(m+2)
c (c) = f

◦(m+3)
c (0) ∈ Gc. This is not possible if c belongs to a parapuzzle

piece of depth m since in this case, f
◦(m+2)
c (c) ∈ Uc ⊂ CrGc. �

Corollary 12.2. Let P be a parapuzzle piece of depth m ≥ −2. Then the bound-
aries of the dynamical puzzle pieces of depth n ∈ [−2,m+ 1] vary holomorphically
with respect to c ∈P.

12.4. Enlarged and thickened pieces. As in the introduction, we now define
enlarged and thickened dynamical pieces. Given c ∈ U−2, set

S±c := P−1,c(±βc) and Ŝ±c := ±C−2,c,
where βc is the landing point of the ray of angle 0, i.e., the fixed point of fc different
from αc.

Definition 12.3 (Good and enlarged pieces). A puzzle piece P ∈ Puzzlem(c) of

depth m ≥ −1 is a good piece if f
◦(m+1)
c (P) = S±c . In that case, the enlarged piece

P̂ is the component of f
−(m+1)
c (Ŝ±c ) containing P .

Lemma 12.4. Assume P is a parapuzzle piece of depth m ≥ −2. The boundaries
of enlarged pieces of depth n ∈ [−1,m + 1] vary holomorphically with respect to
c ∈P.

Proof. The enlarged pieces Ŝ±c have depth −1. Their boundaries are contained in
G−1c . It follows that the boundaries of enlarged pieces of depth n ∈ [−1,m+ 1] are
contained in Gm+1

c . The result follows from Lemma 12.1. �

Let us now define the thickened pieces. For c ∈ W , the rays Rc(±5/12) do

not bifurcate and land at a common iterated preimage of αc. Let C̃−2,c be the
component of {

z ∈ C | gc(z) < 1
}
r
(
Rc(5/12) ∪Rc(−5/12)

)
which contains C−2,c.

Definition 12.5 (Thickened pieces). If P ∈ Puzzlem(c) is a good piece of depth

m ≥ −1, the thickened piece P̃ is the component of f
−(m+2)
c (C̃−2,c) containing P .

Lemma 12.6. Assume P is a parapuzzle piece of depth m ≥ 0. The boundaries
of thickened pieces of depth n ∈ [−1,m − 1] vary holomorphically with respect to
c ∈P.

Proof. The thickened piece C̃−2,c have depth −2. Its boundary is contained in G0c .
It follows that the boundaries of thickened puzzle pieces of depth n ∈ [−1,m − 1]
are contained in Gm+1

c . The result follows from Lemma 12.1. �

It will be convenient to restrict our study to the parapuzzle pieces V b V ′

containing −2 of respective depths 1 and 0:

V := P1(−2) and V ′ := P0(−2).
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The parapuzzle piece V ′ is bounded by an arc of equipotential of level 1/4 and
arcs of the parameter rays R(±5/12) which land at a common parameter c ∈
M (see Figure 26). As c varies in V , the thickened parapuzzle pieces S̃±c move
holomorphically. The parapuzzle piece V is relatively compact in V ′.

V

V ′

R( 5
12 )

R(−512 )

M ∩W

Figure 26: The 1/2-limb M ∩ W and the parapuzzle piece V := P1(−2) (green)
which is relatively compact in the parapuzzle piece V ′ := P0(−2) (yellow).

12.5. Regularity. As in §2.2, a puzzle piece P ∈ Puzzlem(c) of depth m ≥ 1 is
regular if

f◦mc (P) = C0,c and f◦mc : P̂ → Ĉ0,c is an isomorphism;

and nc : C→ N ∪ {+∞} is defined by

nc(x) := inf
{
n ≥ 1 | x is contained in a regular piece of depth n

}
with the convention that inf ∅ := +∞.

Assume P ⊆ V is a parapuzzle piece of depth m ≥ 1. According to Lemma
12.4, as c varies in P, the boundaries of enlarged pieces of depth n ∈ [−1,m + 1]

vary holomorphically. Let c 7→ P̂c be such a holomorphically varying puzzle piece.
Note that if Pc0 is regular for some c0 ∈ P, then Pc is regular for all c ∈ P.

Indeed, no critical point of f◦nc can enter P̂c as it moves holomorphically, so that

the degree of f◦nc : P̂c → Ĉ0,c remains constant (equal to 1).
In particular, if Pm,c0(c0) is regular for some c0 ∈ P, then Pm,c(c) is regular

for all c ∈P. In that case, we say that the parapuzzle piece P is regular and we
define NP : P → N ∪ {+∞} by

NP(c) := nc
(
f◦mc (c)

)
.

Then, NP(c) is finite if and only if c belongs to a regular piece Q ( P; and for
each n ≥ 1, N−1P (n) is a union of regular parapuzzle pieces of depth m+ n.

13. Harvesting in parameter space

We now state the main result which will enable us to transfer results from the
dynamical space to the parameter space. This transfer technique was first used
by Shishikura to simplify the proof by Yoccoz that the Mandelbrot set is locally
connected at non renormalizable parameters (see [R]).
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Proposition 13.1. Assume P ⊂ V is a regular parapuzzle piece of depth m ≥ 1
and c0 ∈ P. Then there exists a homeomorphism Ψ : P → C0,c0 such that if
Q ⊂P is a parapuzzle piece of depth m+ n with n ∈ [1,m− 1], then

• Ψ(Q) is a puzzle piece of depth n for fc0 ;
• Q is regular if and only if Ψ(Q) is regular;

• modulus(PrQ) ≥ κ · height
(
Ψ(Q)

)
for some constant universal κ which

depends neither on c0, nor on P.

Proof. According to Lemma 12.1, as c varies in P, the graph Gm+1
c does not bifur-

cate, thus varies holomorphically. Let c 7→ (ψc : Gm+1
c0 → Gm+1

c ) be a holomorphic
motion parameterized by c ∈ P, respecting potentials and external arguments.
According to Slodkowski’s Theorem, this holomorphic motion extends to a holo-
morphic motion c 7→ (ψc : C→ C). Define Ψ : P → C0,c0 by

Ψ(c) := ψ−1c ◦ f◦mc (c).

Then, Ψ : P → C0,c0 is a (locally quasiconformal) homeomorphism which maps
parapuzzle pieces of depth m+n with n ∈ [0,m+1] to puzzle pieces of fc0 of depth
n.

Next, Q is regular if and only if P := Pn,c
(
f◦mc (c)

)
is regular. And this is the

case if and only if Ψ(Q) = ψ−1c (P) is regular.

To control the modulus of PrQ, we use the following result.

Lemma 13.2. Assume P ′ ∈ Puzzlen(c0) is a good piece of depth n ∈ [1,m − 1]
containing Ψ(Q). Set A ′ = Ψ−1

(
A(P ′)

)
. Then,

modulus(A ′) ≥ 1

K
·modulus

(
A(P ′)

)
for some constant K which only depends on the hyperbolic diameter of V in V ′.

Proof. Let c 7→
(
χc : A(S+

c0) → A(S±c )
)

be a holomorphic motion parameterized
by c ∈ V ′. Since V is relatively compact in V ′, there is a constant K such that χc is
K-quasiconformal for all c ∈ V . This constant K only depends on the hyperbolic
diameter of V in V ′. For c ∈ P, set P ′c := ψc(P ′). According to Lemmas

12.4 and 12.6, the enlarged and thickened pieces P̂ ′c and P̃ ′c vary holomorphically
with respect to c ∈ P. Thus, f◦nc : A(P ′c) → A(S±c ) is a covering map for all
c ∈ P, and we may lift the holomorphic motion c 7→ χc to a holomorphic motion
c 7→

(
φc : A(P ′) → A(P ′c)

)
such that f◦nc ◦ φc = χc ◦ f◦nc0 on A(P ′). Then, the

homeomorphism Φ : A ′ → A(P ′) defined by

Φ(c) := φ−1c ◦ f◦nc (c)

is K-quasiconformal. �

The proposition follows with

κ :=
1

K
· inf
c∈V

modulus
(
A(S±c )

)
. �

A regular parapuzzle piece P ⊂ V is regular of order ` if it is contained in
exactly ` regular parapuzzle pieces

P1 ⊃P2 ⊃ · · · ⊃P` = P.

Set

n0 := depth(P1) and nk := depth(Pk+1)− depth(Pk) for k ∈ [1, `].
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The parapuzzle piece P is strongly regular of order ` if for all k ∈ [1, `],

1

k

k∑
j=1

max(0, nj − n0) ≤ 1

4
.

Proposition 2.8 may be reformulated as follows.

Proposition 13.3. There exist K > 0, σ < 1 and N ≥ 1 such that the following
holds. If P ⊂PN (−2) is strongly regular of order `, then

∀n ∈
[
1,depth(P)

]
,

Leb{c ∈P ∩ R | NP (c) ≥ n
}

Leb(P ∩ R)
≤ Kσn.

Proof. Assume N ≥ 7, and fix c0 ∈ P. Let Ψ : P → C0,c0 be a homeomorphism
provided by Proposition 13.1.

Let us say that a parapuzzle piece Q ⊂ P is singular if the parapuzzle pieces
P ′ satisfying Q ⊆P ′ ( P are not regular.

Assume n ∈ [2,m] with m := depth(P). Then, c ∈ P ∩ R and NP(c) ≥ n if
and only if

• either c is an iterated preimage of αc for fc
• or the parapuzzle piece Q := Pm+n−1(c) is singular.

The first case occurs for countably many c, thus has Lebesgue measure 0. The
second case occurs if and only if Ψ(Q) ∈ Puzzlen−1(c0) is a singular piece. It
follows from Propositions 10.3 and 13.1 that

modulus(PrQ) ≥ κ · n− 2

16

for some constant κ which depends neither on c0, nor on P; and from Proposition
8.2 that P contains at most 3 · (2N)n/N singular pieces of depth m+ n− 1. As a
consequence

Leb{c ∈P ∩ R | NP (c) ≥ n
}

Leb(P ∩ R)
≤ 3 · (2N)n/N · eπ · exp

(
−2πκ

n− 2

16

)
.

The result now follows with K = 3 eπ eπκ/4, any σ ∈ (e−πκ/8, 1) and N suffi-
ciently large so that (2N)1/N · e−πκ/8 < σ. �

14. The probabilistic argument

In this section, we finally prove Lemma 2.9. Recall that (Y, p) is a probability
space and (Mk : Y → N)k≥1 are random variables. Consider the associated sum

Sk := M1 + · · ·+Mk.

Given (m1, . . . ,mk) ∈ Nk, the set Y (m1, . . . ,mk), the conditional expectations
E(m1, . . . ,mk) and the conditional variances V (m1, . . . ,mk) are defined in §2.5.
We assume that the quantities

E := sup
(m1,...,mk)

E(m1, . . . ,mk) and V := sup
(m1,...,mk)

V (m1, . . . ,mk).

are finite. We will actually need that they are small.

Proposition 14.1. For any γ > 1/2 there is a constant Cγ such that for all δ > 0,

p
{
y ∈ Y | ∀k ≥ 1, Sk(y) < kE + δkγ log2 k

}
> 1− CγV

δ2
.
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Proof. For k ≥ 1, let Nk : Y → R and Tk : Y → R be the random variables defined
by

Nk(y) := Mk(y)− E
(
M1(y), . . . ,Mk−1(y)

)
and Tk :=

∑
1≤j≤k

Nj .

First, observe that

for i 6= j,

∫
Y

Ni ·Nj dp = 0.

Indeed, without loss of generality, assume that i < j. Then, Ni is constant on each
set Y (m1, . . . ,mj) and the average of Nj on each such set is 0 by construction.

Next, let ϕ : N∗ → N be the map that forgets the rightmost 1 in the binary
expansion of numbers:

ϕ
(
2r · (2s+ 1)

)
= 2r+1s.

For k ≥ 1, set

Uk := Tk − Tϕ(k) =

k∑
j=ϕ(k)+1

Nj .

Lemma 14.2. Given γ > 1/2, there exists a constant Cγ such that for all δ ≥ 0

p
{
y ∈ Y | ∃k with Uk ≥ δkγ

}
≤ Cγ ·

V

δ2
.

Proof. For k = 2r · (2s+ 1), we have k − ϕ(k) = 2r and so,

δ2k2γ · p(Uk ≥ δkγ) ≤
∫
Y

U2
k dp =

∑
ϕ(k)<j≤k

∫
Y

Nj
2 dp ≤ 2rV.

Thus,

p{y ∈ Y | ∃k with Uk ≥ δkγ} ≤
∑

r≥0,s≥0

2rV

δ2 · (2r)2γ · (2s+ 1)2γ
= Cγ ·

V

δ2

with

Cγ :=

∑
r≥0

1

(22γ−1)r

 ·
∑
s≥0

1

(2s+ 1)2γ

 . �

Outside a set of measure CγV/δ
2, we have Uk < δkγ for all k ≥ 1. Forgetting

all the 1s in the binary expansion of k requires at most log2 k steps. Thus, outside
a set of measure CγV/δ

2, we have

for all k ≥ 1 Tk < δkγ log2 k so that Sk < kE + δkγ log2 k.

This completes the proof of Proposition 14.1. �

Lemma 2.9 is a corollary of this proposition.

Proof of Lemma 2.9. We need to show that for all ε > 0 and η > 0, if E and V are
sufficiently small, then

p
{
y ∈ Y | ∀k ≥ 1, Sk(y) ≤ kε

}
≥ 1− η.

Given ε > 0 and η > 0, fix γ ∈ (1/2, 1). Let δ > 0 be sufficiently small so that
δkγ log2 k < εk/2 for all k ≥ 1. Assume E < ε/2 and V < δ2η/Cγ . The result now
follows from Proposition 14.1. �
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[BDH] G. Blé, C. Henriksen & A. Douady, Round Annuli, Contemporary Mathematics. 355

(2004), 71–76.

[BH] B. Branner & J.H. Hubbard, The iteration of cubic polynomials. II. Patterns and para-
patterns, Acta Math. 169 (1992), no. 3-4, 229–325.

[H] J.H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of

J.-C. Yoccoz, in Topological methods in modern mathematics (Stony Brook, NY, 1991),
467–511, Publish or Perish, Houston, TX, 1993.

[M] J. Milnor, Local connectivity of Julia sets: expository lectures, in The Mandelbrot set,

theme and variations, 67–116,
[R] P. Roesch, Holomorphic motions and puzzles (following M. Shishikura) in The Man-

delbrot set, theme and variations, 117–131, London Math. Soc. Lecture Note Ser., 274,

Cambridge Univ. Press, Cambridge, 2000.
[Y] J.C. Yoccoz, A proof of Jakobson’s theorem, preprint.


	1. Introduction
	2. Sketch of the proof
	2.1. Puzzle pieces
	2.2. Regular points
	2.3. Plowing in the dynamical space
	2.4. Harvesting in the parameter space
	2.5. A probabilistic argument
	2.6. Proof of the Jakobson Theorem

	3. The Yoccoz puzzle
	4. Regular points
	5. Tableaux
	6. The return time n0:=bold0mu mumu nnnnnn(c)
	7. Children
	8. Singular pieces
	9. Weights, heights and lengths
	10. Regular maps
	11. Plowing in the dynamical space
	12. Parapuzzle
	12.1. The parapuzzle in the 1/2-wake
	12.2. The dynamical puzzle
	12.3. Boundaries of puzzle pieces
	12.4. Enlarged and thickened pieces
	12.5. Regularity

	13. Harvesting in parameter space
	14. The probabilistic argument
	References

