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Abstract

We recently proved the existence of quadratic polynomials having a Julia set
with positive Lebesgue measure. We present the ideas of the proof and the
techniques involved.
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1. Introduction

We study the dynamics of polynomials P : C → C, i.e. the sequences defined
by induction:

z0 ∈ C, zn+1 = P (zn).

The sequence (zn) is called the orbit of z0.

Definition 1. The filled-in Julia set K(P ) is the set of points z0 ∈ C with
bounded orbits. The Julia set J(P ) is the boundary of K(P ).

The filled-in Julia set K(P ) is a compact subset of C and so, its boundary
J(P ) has empty interior. Points outside K(P ) have an orbit tending to ∞.

This subject has its roots in complex analysis, strongly linked to Montel’s
theorem on normal families. In particular, the family of iterates (P ◦n)n≥0 is
normal on the complement of J(P ) (called the Fatou set of P ) and on any open
set intersecting the Julia set J(P ), the sequence of iterates is not normal, since
such an open set contains points with bounded orbit and points whose orbit
tends to ∞. Thus, the Julia set J(P ) may be viewed as the chaotic set for the
dynamics of P .

Periodic points play an important role from a dynamical point of view.
A periodic point of P of period p is a point z such that P ◦p(z) = z for some
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†CNRS; Institut de Mathématiques de Toulouse UMR 5219; F-31062 Toulouse, France.

E-mail: arnaud.cheritat@math.univ-toulouse.fr.



2 Xavier Buff and Arnaud Chéritat

Figure 1. Left: the Julia set of a quadratic polynomial for which the critical point
is periodic of period 3. It is known as the Douady Rabbit. Right: the Julia set of a
quadratic polynomial with an unbounded critical orbit. The Julia set is a Cantor set.

smallest integer p ≥ 1. The set {z, P (z), . . . , P ◦(p−1)(z)} is a periodic cycle. The
periodic point is repelling (respectively attracting, superattracting, indifferent)
if its multiplier λ = (P ◦p)′(z) satisfies |λ| > 1 (respectively 0 < |λ| < 1, λ = 0,
|λ| = 1). The Julia set J(P ) may equivalently be defined as the closure of the
set of repelling periodic points of P .

Fatou observed that the dynamics of a polynomial P is intimately related
to the behavior of the orbit of the critical points of P . A critical point of P is
a point ω ∈ C for which P ′(ω) = 0. In particular, Fatou proved that K(P ) is
connected if and only if all the critical points of P are in K(P ). Further, when
all the critical points of P are in the complement of K(P ), then K(P ) = J(P )
is a Cantor set.

Fatou suggested that one should apply to J(P ) the methods of Borel-
Lebesgue for the measure of sets. This naturally yields the following question.

Question. What can we say about the Lebesgue measure of the Julia set of a
polynomial?

Until recently, the common belief was that Julia sets of polynomials always
had area (Lebesgue measure) zero. It is known that the area of J(P ) is zero in
several cases, in particular when J(P ) does not contain critical points of P or
when the orbit of any critical point of P contained in J(P ) is finite ([DH] or
[L1]).

In the rest of the article, we will mainly focus on the case of quadratic
polynomials

Qλ(z) = λz + z2 with λ ∈ C.

Such a polynomial has a fixed point at 0 with multiplier λ and a unique critical
point ωλ = −λ/2. So, we have the following dichotomy: K(Qλ) is connected if
the orbit of ωλ is bounded and is a Cantor set otherwise. We shall denote by
M the set of parameters λ ∈ C for which K(Qλ) is connected (see Figure 2).

The area of J(Qλ) is zero:

• when λ is outside the connectivity locus M;
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Figure 2. The set M of parameters λ ∈ C for which J(Qλ) is connected. It contains
the unit disk D for which Qλ has an attracting fixed point at 0.

• when Qλ has a (super)attracting cycle (conjecturally, this is true for all
λ in the interior of M, and according to [MSS], if there were a parameter
λ in the interior of M for which Qλ does not have an attracting cycle, it
is known that J(Qλ) would necessarily have positive area);

• for a generic (in the sense of Baire) λ in the boundary of M ([L1] or [L2]),

• if Qλ is not infinitely renormalizable ([L3] or [Sh]), a condition that we
will not define here;

• if λ = e2iπα with α = a0 +
1

a1 +
1

a2 +
.. .

and log an = O(
√
n) ([PZ]); this

condition on α holds for almost every α ∈ R/Z.

In the 1990’s, Douady proposed a program to show that there exist complex
numbers λ of modulus 1 so that the area of J(Qλ) is positive. After a major
breakthrough by the second author [C1], we finally brought Douady’s program
to completion in 2005. For a presentation of Douady’s initial program, the
reader is invited to consult [C2].

Theorem 1.1 ([BC2]). There exist λ of modulus 1 such that J(Qλ) has positive
area.

We will present the ideas of the proof and the techniques involved.

2. Quadratic Polynomials with an Indifferent
Fixed Point

We may classify the quadratic polynomials Qλ with |λ| = 1 in three categories
as follows. First, let us note λ = e2πiα with α ∈ R/Z and set

Pα(z) = ei2παz + z2, Kα = K(Pα) and Jα = J(Pα).
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If α ∈ Q/Z, we say that 0 is a parabolic fixed point of Pα. In that case, Kα

has interior and 0 ∈ Jα. The orbit of a point in the interior of Kα converges to
0. The Julia set Jα has area zero.

If α ∈ (R − Q)/Z, the dynamical behavior of Pα near 0 depends subtly on
the arithmetical properties of α. We have the following dichotomy.

• If α is sufficiently Liouville, then Jα = Kα. Any neighborhood of 0 con-
tains points with bounded orbit and points whose orbit tends to ∞. Cre-
mer proved that the set of such angles α is Gδ dense in R/Z. We say that
Pα has a Cremer fixed point at 0.

• If α is badly approximated by rational numbers, then 0 is in the interior
of Kα. In that case, we denote by ∆α the component of the interior of Kα

that contains 0. Then Pα is holomorphically conjugate to the aperiodic
rotation Rα : z 7→ e2πiαz : there is an analytic isomorphism φ between the
unit disk D and ∆α such that φ(0) = 0 and φ◦Rα = Pα◦φ. One says that
the polynomial Pα is linearizable and the component ∆α is called a Siegel
disk. Siegel [Si] proved that this property holds when α is Diophantine,
in particular for a set of full measure in R/Z (α is Diophantine if there
are constants c > 0 and τ ≥ 2 such that |α− p/q| > c/qτ for all rational
numbers p/q).

Figure 3. The Julia set of Pα for α = (
√
5− 1)/2. We have drawn the orbits of some

points in the Siegel disk. Each orbit accumulates on a R-analytic circle.

In fact, there is a complete arithmetic characterization of the two previous
sets of angles. Let (pn/qn)n≥0 be the approximants to α given by the continued
fraction algorithm. Brjuno [Brj] proved that when

B(α) =
∑

n≥0

log qn+1

qn
< +∞,
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the polynomial Pα is linearizable. Yoccoz [Y] proved that when B(α) = +∞,
the polynomial Pα has a Cremer fixed point at 0. In addition, any neighborhood
of 0 contains a cycle which is not reduced to {0}.

We have the following refined versions of our theorem.

Theorem 2.1. There exist angles α ∈ (R−Q)/Z for which Pα has a Cremer
fixed point at 0 and area(Jα) > 0.

Theorem 2.2. There exist angles α ∈ (R − Q)/Z for which Pα has a Siegel
disk and area(Jα) > 0.

We will now sketch the proof of the first theorem. The proof of the second
theorem relies on similar ideas.

3. Strategy of the Proof

Proposition 3.1. The function α 7→ area(Kα) ∈ [0,+∞[ is upper semi-
continuous.

In other words, if αn → α, then

lim sup
n→∞

area(Kαn
) ≤ area(Kα).

Proof. Every open set containing Kα contains Kα′ for α′ close enough to α.

We shall see that the existence of Julia sets with positive area is an immedi-
ate consequence of the following key proposition which is illustrated by Figure
4.

Proposition 3.2. There exists a non empty set S of Diophantine numbers
such that: for all α ∈ S and all ε > 0, there exists α′ ∈ S with

• |α′ − α| < ε,

• Pα′ has a cycle in D(0, ε) \ {0} and

• area(Kα′) ≥ (1− ε)area(Kα).

With this proposition, one concludes as follows. First, we choose εn in (0, 1)
so that

∏

(1− εn) > 0. Then, we construct (θn ∈ S) so that:

• (θn) is a Cauchy sequence.

• area(Kθn) ≥ (1− εn)area(Kθn−1
).

• For θ = lim θn, the polynomial Pθ has small cycles.

Since θn is Diophantine, K(Pθn) has non empty interior and so, its area is
positive. Since Pθ has small cycles, it is not linearizable, and so Jθ = Kθ. By
upper semi-continuity of the function α 7→ area(Kα), we have

area(Jθ) = area(Kθ) ≥ lim sup
n→+∞

area(Kθn) ≥ area(Kθ0) ·
∏

n≥1

(1− εn) > 0.
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Figure 4. Two filled-in Julia sets Kα (top) and Kα′ (bottom), with α′ a well-chosen
perturbation of α. If α and α′ are chosen carefully enough the loss of measure from
Kα to Kα′ is small.

4. The Set S

For α ∈ R−Q, let us use the continued fraction notation

[a0, a1, a2, . . .] = a0 +
1

a1 +
1

a2 +
.. .

.

Recall that an irrational number α = [a0, a1, a2, . . .] is of bounded type if the
sequence (an) is bounded.
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Definition 2. For N ≥ 1, denote by SN be the set of irrational numbers
α = [a0, a1, a2, . . .] of bounded type such that an ≥ N for all n ≥ 1.

Proposition 4.1. If N ≥ 1 is a sufficiently large integer, then Proposition 3.2
holds with S = SN .

5. McMullen’s Results on Siegel Disks of
Bounded Type

As we shall see below, the proof of Proposition 4.1 reduces to the following
result that is illustrated on Figure 5.

Lemma 5.1. If N ≥ 1 is a sufficiently large integer, then for all α ∈ SN , there
is a sequence αn ∈ SN converging to α such that

• Pαn
has a cycle converging to 0 as n → ∞,

• for all open set U ⊂ ∆α, we have

lim inf
n→∞

area(U ∩∆αn
) ≥ 1

2
area(U ∩∆α) and

• ∆αn
→ ∆α for the Hausdorff topology on compact subsets of C.

The second assertion says that asymptotically, the Siegel disks ∆αn
are at

least 1/2-dense in ∆α.

Figure 5. Illustration of lemma 5.1 for N = 1, α = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 . . .] and
α′ = [0, 1, 1, 1, 1, 1, 1, 1, 1010, 1, 1, . . .]. The Siegel disk ∆α is colored light grey. The
boundary of the Siegel disk ∆α′ is drawn. The darker set is the set of points in ∆α′

whose orbit under iteration of Pα′ remains in ∆α.
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We then use an argument of toll belts inspired by work of McMullen [McM]
to promote the loss of 1/2 for the area of Siegel disks to an arbitrarily small loss
for the area of the filled-in Julia sets. For the argument of toll belts to work,
we need that α is of bounded type and ∆αn

→ ∆α as n → ∞. More precisely,
we use the following result of McMullen.

Theorem 5.2 (McMullen). Assume α is a bounded type irrational and δ > 0.
Then, every point z ∈ ∂∆α is a Lebesgue density point of the set K(δ) of points
whose orbit under iteration of Pα remains at distance less than δ from ∆α and
eventually intersect ∆α.

Figure 6. If α = (
√
5 − 1)/2, the critical point of Pα is a Lebesgue density point of

the set of points whose orbit remain in D(0, 1). Left: the set of points whose orbit
remains in D(0, 1). Right: a zoom near the critical point.

Proof of Proposition 4.1 assuming lemma 5.1. Assume α ∈ SN and let
(αn)n≥0 be a sequence of SN given by lemma 5.1. Denote by K (resp. Kn)
the filled-in Julia set of Pα (resp. Pαn

) and by ∆ (resp. ∆n) its Siegel disk.
We know that asymptotically, the Siegel disks ∆n are at least 1/2-dense in the
Siegel disk ∆. We want to show that area(Kn) → area(K), which amounts to
proving that the density of Kn in ∆ tends to 1 as n → ∞.

For all S, one can find a finite nested sequence of toll belts (Ws)1≤s≤S

Ws =
{

z ∈ C ; 2δs < d(z,∆) < 8δs
}

with 8δs+1 < δs,

surrounding the Siegel disk ∆ such that for n large enough the following holds.

• The orbit under iteration of Pαn
of any point in ∆\Kn must pass through

all the toll belts.

• Thanks to Lemma 5.1, the toll belts surround the Siegel disk ∆n.
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• Thanks to Theorem 5.2 and Lemma 5.1, under the iterates of Pαn
, at

least 1/2− ε of points in the toll belt Ws+1 will be captured by the Siegel
disk ∆n without being able to enter the toll belt Ws.

• Since the toll belts surround the Siegel disk ∆n, they are free of the
postcritical set of Pαn

. This gives us Koebe control of points passing
through the belt, implying that at most 1/2 + ε of points in ∆ that
manage to reach Ws+1 under iteration of Pαn

will manage to reach Ws.

As a consequence, at most (1/2 + ε)S points in ∆ can have an orbit under
iteration of Pαn

that passes through all the belts and we are done by choosing
S large enough.

6. The Sequence (αn)

We claim that if N is a large enough integer and if α = [a0, a1, . . .] ∈ SN , then
Lemma 5.1 holds for the sequence (αn) defined by

αn = [a0, a1, . . . , an, An, N,N,N, . . .] (1)

where the sequence (An) is chosen so that

An ≥ N, qn

√

An −→
n→+∞

+∞ and qn

√

logAn −→
n→+∞

1.

Lemma 5.1 has three parts which can be treated one at a time: the existence
of a cycle of Pαn

close to 0, the density of the perturbed Siegel disk ∆αn
within

∆α and the Hausdorff convergence of ∆αn
to ∆α.

7. The Control of the Cycle

In order to prove the existence of a cycle of Pαn
close to 0, we use a result of

the second author [C1].

Proposition 7.1. Assume Pα has a Siegel disk. Let (pn/qn) be the approxi-
mant to α given by the continued fraction algorithm. Let χ : D → ∆α be an
isomorphism which sends 0 to 0. There is a sequence (rn) converging to 1 and a
sequence of univalent maps (χn : D(0, rn) → ∆α) converging locally uniformly
to χ : D → ∆α such that the following holds: if (αn) is a sequence converging
to α with lim sup qn

√

|αn − pn/qn| < 1 and if Cn is the set of qn-th roots of
αn − pn/qn, then for n large enough, χn(Cn) is a cycle of period qn of Pαn

.

The functions χn : D(0, rn) → ∆α are called explosion functions. They
control the explosion, as α goes away from pn/qn, of the cycle of period qn of
Pα which coalesces at 0 when α = pn/qn.
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Now, observe that the sequence (αn) defined by Equation (1) satisfies

αn − pn
qn

∼
n→∞

(−1)n

q2nAn
.

Since qn

√
An → +∞, we have that qn

√

|αn − pn/qn| → 0.
Thus, for n sufficiently large, the set Cn of qn-th roots of αn−pn/qn is con-

tained in an arbitrarily small neighborhood of 0. The sequence (χn) converges
locally uniformly to χ. So, for n large enough, the set χn(Cn), which is a cycle
of Pαn

, is contained in an arbitrarily small neighborhood of 0

8. The Density of Perturbed Siegel Disks

We still assume that (αn) is defined by Equation (1).
In order to control the density of the Siegel disks ∆αn

within the Siegel disk
∆α, we may work in the coordinates given by the explosion functions χn. In
other words, we set

fn = χ−1
n ◦ Pαn

◦ χn.

As n → ∞, the domain of fn eventually contains any compact subset of D.
The sequence (fn) converges locally uniformly to the rotation Rα. The map fn
fixes 0 with derivative e2πiαn and has a Siegel disk ∆n whose image by χn is
contained in the Siegel disk ∆αn

of Pαn
.

We want to prove that asymptotically as n → ∞, the Siegel disks ∆n are
1/2-dense in the unit disk. For this purpose, it is not enough to compare the
dynamics of fn with the dynamics of a rotation. Instead, we will compare it
with the (real) dynamics of an appropriate polynomial vector field ξn.

Note that by property of the explosion functions χn, the set Cn of qn-th
roots of εn = αn − pn/qn is a periodic cycle of fn of period qn. Let ξn be the
polynomial vector field which has simple roots exactly at 0 and the points of Cn

and which has derivative 2πiqnεn at 0. Then, the time-1 map of ξn fixes 0 and
the points of Cn (which are also fixed points of f◦qn

n ) with multiplier e2πiqnεn at
0 (which is also the multiplier of f◦qn

n at 0). Thanks to those properties, there
is a good hope that the time-1 map of ξn very well approximates f◦qn

n . This
vector field is

ξn = ξn(z)
d

dz
= 2πiqnz(εn − zqn)

d

dz
.

We have an explicit description of the vector field ξn which is invariant
under the rotation z 7→ e2πi/qnz. For all ρ < 1 and all n sufficiently large, the
set Xn(ρ) defined below is invariant under the real flow of the vector field ξn:

Xn(ρ) =

{

z ∈ C ;
zqn

zqn − εn
∈ D(0, sn)

}

with sn =
ρqn

ρqn + |εn|
.

This set looks like an amoeba with qn arms. Asymptotically, the density of
Xn(ρ) in D(0, ρ) is at least 1/2.
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Figure 7. Some real trajectories for the vector field ξn; zeroes of the vector field are
shown.

Using very careful estimates on how close f◦qn
n is to the time-1 map of the

vector field ξn and using Yoccoz renormalization techniques [Y], we obtain the
following result which implies the required control on the asymptotic density
of ∆n within D.

Proposition 8.1. For all ρ < 1, if n is large enough, the set Xn(ρ) is contained
in the Siegel disk ∆n of fn.

9. Hausdorff Convergence of Perturbed Siegel
Disks

In order to prove the Hausdorff convergence of ∆αn
to ∆α, we use techniques

of near parabolic renormalization introduced recently by Inou and Shishikura
[IS]. Those techniques are far too elaborate for us to present them here.

Let us however insist on the fact that it is to apply those techniques that
we have to assume that the entries in the continued fraction expansion of α are
large enough (an ≥ N for all n).

10. Further Questions

Our proof of existence of quadratic polynomials having a Julia set of positive
area is a priori not constructive. It would be interesting to have informations
regarding the set of α ∈ R for which the Julia set Jα has positive area.

Theorem 10.1 (Petersen, Zakeri). For almost every α ∈ R, we have
area(Jα) = 0.
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Question. Is the set of parameters α ∈ R for which area(Jα) > 0 a Gδ-dense
set?

Now that we have proved the existence of α ∈ R − Z for which Jα = Kα

has positive area, we can change the question. Indeed, we do not know of a
single example of a non linearizable quadratic polynomial Pα with α ∈ R − Q

for which the Julia set has area zero. It may well be that all such Julia set have
positive area.

Question. Is there α ∈ R such that Jα = Kα and area(Jα) = 0?

A key point in our proof was the observation that the function α 7→ area(Kα)
is upper semicontinuous. It would be interesting to have additional informations
regarding its continuity properties.

Theorem 10.2 (Douady). The function α 7→ area(Kα) is discontinuous at
rational numbers.

Question. Is the function α 7→ area(Kα) continuous at irrational numbers?

The techniques we have been developing for studying the area of Julia sets
already had fruitful applications, in particular for the study of Siegel disks.
Answering a question of Herman, we proved the following result in collaboration
with A. Avila.

Theorem 10.3 ([ABC]). There exist α ∈ R such that Pα has a Siegel disk
whose boundary is a smooth (C∞) Jordan curve.

In that case, the boundary of the Siegel disk Pα cannot contain the critical
point of Pα. This is in contrast to the following result of Petersen and Zakeri.

Theorem 10.4 (Petersen-Zakeri). For almost every α ∈ R, Pα has a Siegel disk
whose boundary is a Jordan curve passing through the critical point ωλ = −λ/2.

This raises naturally the following questions.

Question. If Pα has a Siegel disk, is the boundary of ∆α always a Jordan
curve?

Question. For which values of α does Pα have a Siegel disk whose boundary
contains the critical point?
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