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Abstract. In this article, we first study arithmetical properties of postcriti-
cally finite unicritical polynomials fa : z 7→ azD +1 with D ≥ 2. In particular,

we answer a question of Milnor, showing that there exist non Galois conjugate

parameters a1 ∈ C and a2 ∈ C such that fa1 and fa2 have critical orbits peri-
odic with the same period. We also answer a question of Baker and DeMarco,

proving that the set of parameters a ∈ C such that 0 and 1 are simultaneously

(pre)periodic for qa : w 7→ w2 + a is equal to {0,−1,−2}.

Introduction

We study polynomials f : C → C of degree D ≥ 2 from a dynamical point of
view, i.e., we consider sequences {zn}n≥0 defined by iteration:

z0 ∈ C and zn := f(zn−1) = f◦n(z0).

This sequence is called the orbit of z0 for f .
The point z0 is periodic if there is an integer n ≥ 1 such that f◦n(z0) = z0. If p

is the smallest integer with this property, we call it the period of z0. The point z0 is
(pre)periodic if there exists a (smallest) integer k ≥ 0 such that f◦k(z0) is periodic
of period p. We say that k is the preperiod and that p is the period.

Consider the polynomials fa defined by

fa(z) = azD + 1, a ∈ C.
For a 6= 0, those are polynomials of degree D with a unique critical point at 0. We
are interested in the sets AD ⊂MD defined by

AD :=
{
a ∈ Cr{0} ; 0 is (pre)periodic for fa

}
and

MD :=
{
a ∈ C ; the orbit of 0 for fa is bounded

}
.

If a ∈ AD, we say that fa is postcritically finite. The set AD is the set of Misiurewicz
parameters and the setMD is the Multibrot set (a generalization of the Mandelbrot
set in degree D).

We shall first prove a Kronecker type result, where the set of roots of unity is
replaced by AD, and the unit disk is replaced by MD.

Proposition 1. If a is an algebraic integer such that a and all its Galois conjugates
are contained in MD, then a ∈ AD ∪ {0}.

Conversely, according to Milnor [M2, Theorem 3.2], if a ∈ AD, then

• a is an algebraic integer
• its Galois conjugates are in AD,
• the product of a and its Galois conjugates divides D and
• if 0 is periodic for fa with period p ≥ 2, then a is an algebraic unit.
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Figure 1. Left: the set M2. Right: the set M3

We prove that for the last statement, one can get rid of the assumption that 0
is periodic.

Proposition 2. If a ∈ AD and 0 is preperiodic for fa with preperiod k ≥ 2 and
period p ≥ 2, then a is an algebraic unit.

In §2 we study the Gleason polynomials
{
Fp ∈ Z[a]

}
p≥1, defined by

Fp(a) := f◦pa (0).

In §3, we study the Misiurewicz polynomials
{
Fk,p ∈ Z[a]

}
k≥2,p≥1 defined by

Fk,p :=
FDk+p−1 − FDk−1
Fk+p−1 − Fk−1

=
∑

i+j=D−1
F ik+p−1F

j
k−1.

The parameters in AD are the roots of the Gleason and Misiurewicz polynomials.
The proof of the preceding proposition is based on the following two lemmas. The
first lemma is due to Gleason. Our proof of the second lemma corrects the one
given in the appendix of [E].

Lemma 3 (Gleason). For p ≥ 2, the polynomial Fp has simple roots.

Lemma 4. If K > k ≥ 1 and ωD = 1 with ω 6= 1, then FK−ωFk has simple roots.

When q divides p the polynomial Fq divides Fp. Since the roots are simple,

Fp =
∏
q|p

Gq with Gp :=
∏
q|p

Fµ(p/q)q ∈ Z[a],

where µ is the Möbius function defined by µ(n) = (−1)m if n is the product of m
distinct primes with m ≥ 0 and µ(n) = 0 otherwise. It is tempting to conjecture
that the polynomials Gp are irreducible over Q (see [M2, Remark 3.5]). We show
that this is not true in general.

Proposition 5. The polynomial G3 is reducible over Q if and only if D ≡ 1 mod 6.
In this case, G3 has exactly two irreducible factors, one of which is 1 + a+ a2.
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Note that for D = 2, the linear map z 7→ w = az conjugates the quadratic
polynomial fa to the monic centered polynomial qa : w 7→ w2 +a. We conclude the
article with a proof of the following result, which answers a question of Baker and
DeMarco [BD].

Proposition 6. The set of parameters a ∈ C such that 0 and 1 are simultaneously
(pre)periodic for qa is {0,−1,−2}.
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1. A Kronecker type result

We first prove Proposition 1. Our treatment is largely inspired by Kronecker’s
proof that if an algebraic integer and all its Galois conjugates are contained in the
closed unit disk, then this algebraic integer is either 0 or a root of unity.

Lemma 7. Assume a ∈ C and {zn} is a bounded orbit for fa. Then

• either |a| ≤ 2 and |azD−1n | ≤ 2 for all n ≥ 0,
• or |a| > 2 and |zn| < 1 for all n ≥ 0.

Proof. Set wn := azD−1n . First, observe that if |zn| ≥ 1 and |wn| > 2, then

|zn+1| =
∣∣fa(zn)

∣∣ ≥ |azDn | − 1 ≥ |azDn | − |zn| = |zn|
(
|wn| − 1

)
.

Now assume |a| > 2 and set κ := |a| − 1 > 1. If |zn0
| ≥ 1 for some n0, it follows by

induction that for all n ≥ n0, |zn| ≥ κn−n0 ≥ 1 and |wn| ≥ κ + 1 ≥ 2. Indeed, for
n = n0, we have that |zn0 | ≥ 1 and |wn0 | ≥ |a| = κ + 1 ≥ 2. And if the property
holds for some n ≥ n0, then

|zn+1| ≥ |zn|
(
|wn|−1

)
≥ κ|zn| ≥ κn ≥ 1 and |wn+1| = |azD−1n+1 | ≥ |a| = κ+1 ≥ 2.

So, the orbit {zn} is not bounded, which contradicts our assumptions.
Finally, assume |a| ≤ 2 and |wn0

| > 2 for some n0 ≥ 1. Set κ := |wn0
| − 1 > 1.

It follows by induction that for all n ≥ n0, |zn| > κn−n0 ≥ 1 and |wn| ≥ κ+ 1 > 2.
Indeed, for n = n0, we have that |wn0

| = κ + 1 > 2 and |zD−1n0
| = |wn0

/a| > 1, so
that |zn0 | > 1. Now, if the property holds for some n ≥ n0, then

|zn+1| ≥ |zn|
(
|wn| − 1

)
≥ κ|zn| ≥ κn ≥ 1

and
|wn+1| = |azD−1n+1 | ≥ κD−1|wn| > |wn| ≥ κ+ 1 > 2.

So, the orbit {zn} is not bounded, which contradicts our assumptions. �

Corollary 8. If a ∈MD, then |a| ≤ 2.

Proof. By definition, if a ∈MD, the orbit of 0 for fa is bounded. Since fa(0) = 1,
we necessarily have |a| ≤ 2. �

So, assume a1 ∈ MD is an algebraic integer whose Galois conjugates a2, . . . , ad
are in MD. For j ∈ [[ 1, d ]] and n ≥ 0, set zj,n := f◦naj (0) and wj,n := ajz

D−1
j,n .

In order to prove that fa1 is postcritically finite, we must show that the sequence
{z1,n}n≥0 is finite. Equivalently, we shall prove that the sequence {w1,n}n≥0 is
finite.
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The points wj,n are algebraic integers. Let Qn ∈ Z[w] be their minimal polyno-
mials. The Galois conjugates of w1,n are w2,n, . . . wd,n. According to the previous
lemma, those Galois conjugates all have modulus at most 2. It follows that the
coefficients of the polynomials Qn are uniformly bounded, independently on n ≥ 1.
There is a finite number of such polynomials. So, the set {wj,n}j∈ [[ 1,d ]] ,n≥0 is finite.

2. Gleason polynomials

As in the introduction, for p ≥ 1, define Fp ∈ Z[a] recursively by

F1 := 1 and Fp+1 := aFDp + 1,

so that Fp(a) = f◦pa (0). Those polynomials are called Gleason polynomials.

Example. We have that

F2 = a+ 1 and F3 = a(a+ 1)D + 1.

We now prove Lemma 3, i.e., that the roots of the Gleason polynomials are
simple.

Proof of Lemma 3. For p ≥ 1, we have

Fp+1 = aFDp + 1 and F ′p+1 = FDp +DFD−1p F ′p ≡ FDp mod D.

Since Fp is monic,

discriminant(Fp+1) ≡ resultant(aFDp + 1, FDp ) mod D ≡ 1 mod D.

In particular, the discriminant does not vanish and Fp+1 has simple roots. �

For p ≥ 1, let ApD be the set of parameters a ∈ AD such that 0 is periodic for fa
with period p. Moreover, let Gp be the monic polynomial which has simple roots
exactly at the points a ∈ ApD.

Lemma 9. For p ≥ 1, the constant coefficient of Gp is 1 and

Fp =
∏
q|p

Gq.

Proof. For p = 1, we have that G1 = F1 = 1. For p ≥ 2, the roots of Fp are
exactly the parameters a ∈ AqD with q dividing p. Since Fp has simple roots and
all polynomials are monic, we have the required factorization.

For p ≥ 1, the constant coefficient of Fp is 1. In addition, G1 = 1. It follows by
induction on p ≥ 1 that the constant coefficient of Gp is 1. �

Milnor [M2] asked whether the polynomials Gp are irreducible over Q. Proposi-
tion 5 asserts that this is not true in general. We shall now prove this proposition.
Note that

G3 = a(a+ 1)D + 1.

We must prove that G3 is reducible over Q if and only if D ≡ 1 mod 6 and that
in this case, G3 has exactly two irreducible factors, one of which is 1 + a+ a2. This
is in fact a result of Selmer [S] that we reproduce here.
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Proof of Proposition 5. On the one hand, if D ≡ 1 mod 6, then a2 + a + 1
divides G3. Indeed, let ω 6= 1 be a cube-root of unity. Then ω + 1 is a 6-th root of
unity and

G3(ω) = ω(ω + 1)D + 1 = ω(ω + 1) + 1 = ω2 + ω + 1 = 0.

On the other hand, observe that

G3(a) = P (a+ 1) with P (x) := xD(x− 1) + 1 = xD+1 − xD + 1.

If G3 is reducible over Q, then P is reducible over Q and we may write P = P1P2

with P1 ∈ Z[x] and P2 ∈ Z[x] monic polynomials of respective degree D1 ≥ 1 and
D2 ≥ 1. The product of the constant coefficients of P1 and P2 is equal to 1, so that
both are equal to ε ∈ {−1,+1}. Set

R(x) := εxD2P1(x)P2(1/x) and S(x) := εxD1P1(1/x)P2(x).

Note that R ∈ Z[x] and S ∈ Z[x] are monic polynomials with constant coefficient

equal to 1. In addition, R(x) = xD+1S(1/x), so that if R(x) =

D+1∑
j=0

cjx
j , then

S(x) =

D+1∑
j=0

cjx
D+1−j . Moreover,

RS = PQ with Q(x) = xD+1P (1/x) = xD+1 − x+ 1.

Identifying the coefficients of xD+1 on both sides yields

D+1∑
j=0

c2j = 3. Thus, there

are exactly three coefficients cj which are non zero, and they are equal to ±1. We
already know that cD+1 = c0 = 1. So, there exist j ∈ [[ 2, D ]] and cj ∈ {−1,+1}
such that

R(x) = xD+1 + cjx
j + 1 and S(x) = 1 + cjx

D+1−j + xD+1.

Comparing RS to PQ again, we see that we necessarily have j = 1 or j = D and
cj = −1. In other words, either R = P and P2(x) = εxD2P2(1/x), or S = P and
P1(x) = εxD1P1(1/x). In the first case, the roots of P2 are common roots of P and
Q. In the second case, the roots of P1 are common roots of P and Q.

To complete the proof, observe that if xD+1 − xD + 1 = xD+1 − x+ 1 = 0, then
xD−x = 0 and x 6= 0, so that xD−1 = 1. Thus, x2−x+1 = xD+1−x+1 = 0. This
shows that x is a 6-th root of unity; in particular D = 1 mod 6. In addition, P
has two irreducible factors, one of which is x2−x+1. Thus, G3 has two irreducible
factors, one of which is (a+ 1)2 − (a+ 1) + 1 = a2 + a+ 1. �

It might be interesting to study whether there are other values of D and p for
which the polynomial Sp is not irreducible over Q. Adam Epstein would probably
call those algebraic conspiracies.

3. Misiurewicz polynomials

We now prove Lemma 4, i.e., if K > k ≥ 1 and ωD = 1 with ω 6= 1, then the
polynomial FK − ωFk has simple roots.
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Proof of Lemma 4. We first do a preliminary comment. Let Pα ∈ Z[x] be the
minimal polynomial of α := 1− ω. Observe that

xD − 1 = (x− 1)(1 + x+ · · ·+ xD−1) = (x− 1) ·
∏
ζ

(x− ζ),

where ζ ranges in the set of D-th roots of unity different from 1. The constant
coefficient cα ∈ Z of Pα is the product of α and its Galois conjugates. It divides∏
ζ(1− ζ) = 1 + 11 + · · ·+ 1D−1 = D.
Now, assume a0 is a root of

FK − ωFk = a · (FDK−1 − ωFDk−1) + α,

with the convention F0 := 0. Note that the monic polynomial FDK − FDk ∈ Z[a]
vanishes at a0, so that, a0 is an algebraic integer. Observe that

F ′K − ωF ′k = FDK−1 − ωFDk−1 +Da · (FD−1K−1F
′
K−1 − ωFD−1k−1 F

′
k−1).

So, if a0 were a root of F ′K − ωF ′k, then we would have α = Dβ, for some algebraic
integer

β := a20 ·
(
FD−1K−1F

′
K−1 − ωFD−1k−1 F

′
k−1
)
(a0).

Let Pβ ∈ Z[y] be the minimal polynomial of β and let cβ ∈ Z be its constant
coefficient. Then,

Pα(x) = DmPβ(x/D) with m := deg(Pα).

As a consequence, Dmcβ = cα divides D, so that m = 1. This can occur only if
α ∈ Q, i.e., only if ω = −1. In that case, we have 2 = Dβ and so, D = 2 and β = 1.
This proves that when D 6= 2 and ω 6= −1, the roots of FN − ωFn are simple.

It remains to prove that when D = 2, the roots of FK + Fk are simple. Since
FK(0) + Fk(0) = 2, it is equivalent to prove that aFK + aFk has simple roots. Set
Q0 := 0 and for p ≥ 1, Qp := aFp. Then, for p ≥ 1,

Qp = aFp = a · (aF 2
p−1 + 1) = Q2

p−1 + a and Q′p = 2Qp−1Q
′
p−1 + 1 = 1 mod 2.

In particular,

Q′K +Q′k
2

= 1 +QK−1Q
′
K−1 +Qk−1Q

′
k−1 ∈ Z[a].

We have that

Q′K−1 ≡ 1 mod 2 and Q′k−1 ≡ 1 mod 2,

so that

1 +QK−1Q
′
K−1 +Qk−1Q

′
k−1 ≡ 1 +QK−1 +Qk−1 mod 2.

We also have

QK +Qk ≡ Q2
K−1 +Q2

k−1 mod 2 ≡ (QK−1 +Qk−1)2 mod 2.

Since (QK−1 + Qk−1)2 is monic and since 1 + QK−1 + Qk−1 takes the value 1 at
the roots of (QK−1 +Qk−1)2, we have that

resultant

(
QK +Qk,

Q′K +Q′k
2

)
≡ 1 mod 2.

It follows that this resultant is non zero, and that the polynomials QK + Qk and
FK + Fk have simple roots. �
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We may now prove Proposition 2, i.e., if a ∈ AD and 0 is preperiodic for fa with
preperiod k ≥ 2 and period p ≥ 2, then a is an algebraic unit.

For k ≥ 2 and p ≥ 1, let Ak,pD be the set of parameters a ∈ AD such that 0 is
preperiodic for fa with preperiod k and period p. Moreover, let Gk,p be the monic

polynomial which has simple roots exactly at the points a ∈ Ak,pD . Finally, following
Milnor [M1], set

Fk,p :=
FDk+p−1 − FDk−1
Fk+p−1 − Fk−1

=
∑

i+j=D−1
F ik+p−1F

j
k−1.

The polynomials Fk,p are called Misiurewicz polynomials. Proposition 2 is a corol-
lary of the following lemma which asserts that for p ≥ 2, the constant coefficient of
Gk,p is equal to 1.

Lemma 10. For k ≥ 2 and p ≥ 1,

Fk,p = FD−1gcd(p,k−1) ·
∏
q|p

Gk,q.

The constant coefficient of Gk,p is equal to D if p = 1 and is equal to 1 if p ≥ 2.

Proof. First, observe that the roots of Fk,p are the parameters a ∈ AD such that
Fk+p−1(a) = ωFk−1(a) for some D-th root of unity ω 6= 1. According to Lemma
4, Fk+p−1 − ωFk−1 has simple roots. So, if Fk+p−1(a) = ωFk−1(a) = 0, then a is a
root of multiplicity D − 1 of Fk,p. Otherwise, a is a simple root of Fk,p.

Second, Fk+p−1(a) = ωFk−1(a) = 0 if and only if a ∈ AqD for some q dividing
k − 1 and p. And Fk+p−1(a) = ωFk−1(a) 6= 0 if and only if f◦ka (0) is periodic with

period dividing p, but f
◦(k−1)
a (0) is not periodic, i.e., if and only if a ∈ Ak,qD for

some q dividing p.
Third, the constant coefficient of Fk,p is equal to D : there are D terms with

constant coefficient 1 in the sum defining Fk,p. In addition, the constant coefficient
of Fq is 1 for all q ≥ 1. As a consequence, the constant coefficient of

∏
q|pGk,q is D

for all p ≥ 1. It follows by induction on p ≥ 1 that the constant coefficient of Gk,p
is equal to D if p = 1 and to 1 if p ≥ 2. �

4. On a question of Baker and DeMarco

We conclude the article with the proof of Proposition 6 : if 0 and 1 are simulta-
neously (pre)periodic for qa : w 7→ w2 + a, then a ∈ {0,−1,−2}. In fact, this is an
equivalence since

• for q0, 0 and 1 are fixed;
• for q−1, 0 is periodic of period 2 and 1 is preperiodic with preperiod 1 and

period 2 (1 7→ 0 7→ −1 7→ 0);
• for q−2, 0 is preperiodic with preperiod 2 and period 1 (0 7→ −2 7→ 2 7→ 2)

and 1 is preperiodic with preperiod 1 and period 1 (1 7→ −1 7→ −1).

The proof relies on Lemma 11 below which asserts that if 0 and 1 have a bounded
orbit for qa, then a is contained in ∆(−1, 1) ∪∆(−1/4, 1/2) ∪ {−2}, where ∆(z, r)
is the open Euclidean disk centered at z with radius r.

Proof of Proposition 6 assuming Lemma 11. Denote by A the set of param-
eters a ∈ C such that 0 and 1 are simultaneously (pre)periodic for qa. If a ∈ A,
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the orbits of 0 and 1 are finite for qa, thus bounded. According to Lemma 11,
A ⊂ ∆(−1, 1) ∪ ∆(−1/4, 1/2) ∪ {−2}. The disk ∆(−1/4, 1/2) is contained in
the main cardioid of the Mandelbrot set M2. It follows that the only parameter
a ∈ ∆(−1/4, 1/2) for which 0 is (pre)periodic is a = 0. So, A ⊂ ∆(−1, 1)∪{0,−2}.

Assume a ∈ A∩∆(−1, 1). Then, q◦k0a (0) = q
◦(k0+p0)
a (0) for some integers k0 ≥ 0

and p0 ≥ 1 and q◦k1a (1) = q
◦(k1+p1)
a (1) for some integers k1 ≥ 0 and p1 ≥ 1. Note

that

Q0(a) := q◦(k0+p0)a (0)− q◦k0a (0) and Q1(a) := q◦(k1+p1)a (1)− q◦k1a (1)

are polynomials in Z[a]. In particular, a is an algebraic integer. Moreover, if a′ is
a Galois conjugate of a, then Q0(a′) = Q1(a′) = 0, so that a′ ∈ A. Thus, a and its
Galois conjugates are contained in ∆(−1, 1). It follows that a+ 1 and all its Galois
conjugates are contained in the unit disk. In particular, their product is an integer
contained in the unit disk, i.e., is equal to 0. Thus, a+ 1 = 0 and a = −1. �

Denote by N the set of parameters a ∈ C such that 0 and 1 have a bounded
orbit for qa.

Figure 2. The set N and the boundary of ∆(−1, 1) ∪∆(−1/4, 1/2).

Lemma 11. The set N is contained in ∆(−1, 1) ∪∆(−1/4, 1/2) ∪ {−2}.

Proof. For a ∈ C and for n ≥ 0, set

Pn(a) := q◦na (0) = af◦na (0) and Qn(a) := q◦na (1) = af◦na (1/a).

According to Lemma 7 with D = 2,

a ∈ N =⇒
∣∣Pn(a)

∣∣ ≤ 2 and
∣∣Qn(a)

∣∣ ≤ 2 for all n ≥ 0.
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Let us subdivide U := Cr∆(−1, 1) ∪∆(−1/4, 1/2) in two pieces:

U0 :=
{
a ∈ U ; Re(a) ≤ −1

}
, U1 :=

{
a ∈ U ; Re(a) ≥ −1

}
.

It is enough to prove that

•
∣∣P3(a)

∣∣ > 2 for a ∈ U0r{−2} and

•
∣∣Q3(a)

∣∣ > 2 for a ∈ U1.

Let us begin with P3(a) = a·(a3+2a2+a+1). The roots of P3 are 0, −1.7548 . . .,
−0.1225 . . .± i0.7448 . . . which do not belong to U0. Thus,

min
U0

|P3| = min
∂U0

|P3|.

An elementary computation yields∣∣P3(−1 + iy)
∣∣2 = y8 + 2y6 + 3y4 + 3y2 + 1.

Note that y2 ≥ 1 when −1 + iy ∈ ∂U0. In this case∣∣P3(−1 + iy)
∣∣2 ≥ 10 > 4.

In addition,∣∣P3(−1 + eiθ)
∣∣2 = h

(
cos(θ)

)
with A(x) := −16x4 + 24x3 + 8x2 − 26x+ 10.

Note that cos(θ) ∈ (−1, 0) when −1 + eiθ ∈ ∂U0r{−2}. Thus, it is enough to
prove that A > 4 on (−1, 0). Observe that A(x) − 4 = −2(x + 1)B(x) with
B(x) := 8x3 − 20x2 + 16x − 3. We have to prove that B < 0 on (−1, 0). Note
that B′(x) = 24(x− 1)(x− 2/3), so that B is increasing on (−1, 0) and B < −3 on
(−1, 0).

Let us now consider Q3(a) = (a+ 1)(a3 + 5a2 + 6a+ 1). The roots of Q3 are −1,
−0.198 . . ., −3.24 . . . and −1.55 . . . which do not belong to U1. Thus,

min
U1

|Q3| = min
∂U1

|Q3|.

An elementary computation yields∣∣Q3(−1 + iy)
∣∣2 = y8 + 6y6 + 5y4 + y2.

Note that y2 ≥ 1 when −1 + iy ∈ ∂U1. In this case∣∣Q3(−1 + iy)
∣∣2 ≥ 13 > 4.

The circles C(−1, 1) and C(−1/4, 1/2) intersect at the points −1/8± i
√

15/8. We
have that∣∣Q3(−1 + eiθ)

∣∣2 = C
(
cos(θ)

)
with C(x) := −8x3 − 12x2 + 8x+ 13.

Note that cos(θ) ∈ (0, 7/8) when −1 + eiθ ∈ ∂U1. The derivative C ′(x) vanishes at

x0 = (−3−
√

21)/6 < 0 and x1 = (−3 +
√

21)/6 ∈ (0, 7/8). So, on (0, 7/8),

C(x) ≥ min
(
C(0), C(7/8)

)
> 4.

Finally, ∣∣Q3(−1/4 + eiθ/2)
∣∣2 = δ

(
cos(θ)

)
with

δ(x) := − 39

256
x4 − 31

256
x3 +

5607

2048
x2 +

25933

4096
x+

242593

65536
.
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Note that cos(θ) ∈ (1/4, 1) when −1/4 + eiθ/2 ∈ ∂U1. In this case,

δ
(
cos(θ)

)
≥ − 39

256
− 31

256
+

5607

2048
· 1

42
+

25933

4096
· 1

4
+

242593

65536
> 4. �
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