On Postcritically Finite Unicritical Polynomials

Xavier Buff

ABSTRACT. In this article, we first study arithmetical properties of postcriti-
cally finite unicritical polynomials f, : z — azP +1 with D > 2. In particular,
we answer a question of Milnor, showing that there exist non Galois conjugate
parameters a; € C and a2 € C such that f,; and fu, have critical orbits peri-
odic with the same period. We also answer a question of Baker and DeMarco,
proving that the set of parameters a € C such that 0 and 1 are simultaneously
(pre)periodic for qq : w +— w? + a is equal to {0, —1, —2}.

Introduction

We study polynomials f : C — C of degree D > 2 from a dynamical point of
view, i.e., we consider sequences {z, }n>0 defined by iteration:

20 €C and 2z, := f(zn—1) = " (20).

This sequence is called the orbit of zy for f.

The point zg is periodic if there is an integer n > 1 such that f°"(zp) = zo. If p
is the smallest integer with this property, we call it the period of zy. The point zj is
(pre)periodic if there exists a (smallest) integer k > 0 such that f°(zg) is periodic
of period p. We say that k is the preperiod and that p is the period.

Consider the polynomials f, defined by

fa(z) =azP +1, acC.
For a # 0, those are polynomials of degree D with a unique critical point at 0. We
are interested in the sets Ap C M p defined by
Ap = {a € C~{0} ; 0is (pre)periodic for f,} and
Mp = {a € C ; the orbit of 0 for f, is bounded}.

If a € Ap, we say that f, is postcritically finite. The set Ap is the set of Misiurewicz
parameters and the set M p is the Multibrot set (a generalization of the Mandelbrot
set in degree D).

We shall first prove a Kronecker type result, where the set of roots of unity is
replaced by Ap, and the unit disk is replaced by Mp.

Proposition 1. If a is an algebraic integer such that a and all its Galois conjugates
are contained in Mp, then a € Ap U{0}.

Conversely, according to Milnor [M2, Theorem 3.2], if a € Ap, then

e ¢ is an algebraic integer

e its Galois conjugates are in Ap,

e the product of a and its Galois conjugates divides D and

e if 0 is periodic for f, with period p > 2, then a is an algebraic unit.
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FIGURE 1. Left: the set M. Right: the set M3

We prove that for the last statement, one can get rid of the assumption that 0
is periodic.
Proposition 2. If a € Ap and 0 is preperiodic for f, with preperiod k > 2 and
pertod p > 2, then a is an algebraic unit.

In We study the Gleason polynomials {F, € Z[a]}p21, defined by

Fp(a) == f57(0).

In §3| we study the Misiurewicz polynomials { Fy, € Za defined by

]}k22,p21
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The parameters in Ap are the roots of the Gleason and Misiurewicz polynomials.
The proof of the preceding proposition is based on the following two lemmas. The
first lemma is due to Gleason. Our proof of the second lemma corrects the one
given in the appendix of [E].

Lemma 3 (Gleason). For p > 2, the polynomial F), has simple roots.
Lemma 4. If K > k> 1 and w® =1 withw # 1, then Fx —wF}, has simple roots.
When ¢ divides p the polynomial F, divides F},. Since the roots are simple,

F,=]]G, with G,:=]][Fr*® ezfa,
qlp alp
where g is the Mobius function defined by pu(n) = (—1)™ if n is the product of m
distinct primes with m > 0 and p(n) = 0 otherwise. It is tempting to conjecture
that the polynomials G, are irreducible over Q (see [M2, Remark 3.5]). We show
that this is not true in general.

Proposition 5. The polynomial Gs is reducible over Q if and only if D =1 mod 6.
In this case, G3 has exactly two irreducible factors, one of which is 1 + a + a?.
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Note that for D = 2, the linear map z — w = az conjugates the quadratic
polynomial f, to the monic centered polynomial ¢, : w — w? +a. We conclude the
article with a proof of the following result, which answers a question of Baker and
DeMarco [BD].

Proposition 6. The set of parameters a € C such that 0 and 1 are simultaneously
(pre)periodic for q, is {0,—1,—2}.
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1. A Kronecker type result

We first prove Proposition [I] Our treatment is largely inspired by Kronecker’s
proof that if an algebraic integer and all its Galois conjugates are contained in the
closed unit disk, then this algebraic integer is either 0 or a root of unity.

Lemma 7. Assume a € C and {z,} is a bounded orbit for f,. Then
e cither |a| <2 and |azP~1| <2 for alln >0,
e orlal > 2 and |z,| <1 for alln > 0.
Proof. Set w,, := az?~1. First, observe that if |2,| > 1 and |w,| > 2, then
|Zn+1| = ‘fa(zn)’ > |azr?‘ -1z |azrj?| - |Zn| = |Zn|(|wn| - 1)-

Now assume |a| > 2 and set k :=|a| — 1 > 1. If |z,,| > 1 for some ng, it follows by
induction that for all n > ng, |z,| > k"™ > 1 and |w,| > £+ 1 > 2. Indeed, for
n = ng, we have that |z,,| > 1 and |wy,| > |a| = K+ 1 > 2. And if the property
holds for some n > ng, then

Znt1| > |zn|(lwn]=1) > &lzn| > 6" > 1 and  |wpia| = azl 5| > |a| = k+1 > 2.

So, the orbit {z,} is not bounded, which contradicts our assumptions.
Finally, assume |a| < 2 and |w,,,| > 2 for some ng > 1. Set K := |wy,,| — 1 > 1.
It follows by induction that for all n > ng, |z,| > k"™ > 1 and |w,| > kK +1 > 2.
Indeed, for n = ng, we have that |w,,| = k41> 2 and |27 = |wy,,/a] > 1, so
that |z,,| > 1. Now, if the property holds for some n > ng, then
[Znt1]| = |znl(lwn] = 1) > Klza| > 6" > 1

and

| w41l = |az£+11| 2 “D71|wn| > |wn| 2K +1>2.
So, the orbit {z,} is not bounded, which contradicts our assumptions. O
Corollary 8. Ifa € Mp, then |a| < 2.
Proof. By definition, if a € M p, the orbit of 0 for f, is bounded. Since f,(0) =1,

we necessarily have |a| < 2. O
So, assume a; € M p is an algebraic integer whose Galois conjugates as, ..., aq
are in Mp. For j € [1,d] and n > 0, set z;, := f;"(0) and w;, = ajzfn_l

In order to prove that f,, is postcritically finite, we must show that the sequence
{#1,n}n>0 is finite. Equivalently, we shall prove that the sequence {w1n}n>0 is
finite.
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The points w; ,, are algebraic integers. Let @, € Z[w] be their minimal polyno-
mials. The Galois conjugates of w; , are wap,...wq,,. According to the previous
lemma, those Galois conjugates all have modulus at most 2. It follows that the
coefficients of the polynomials (),, are uniformly bounded, independently on n > 1.
There is a finite number of such polynomials. So, the set {w; . }je[1,4,n>0 is finite.

2. Gleason polynomials
As in the introduction, for p > 1, define F), € Z[a] recursively by
Fi:=1 and Fp4q:= aFZP +1,
so that Fj(a) = foP(0). Those polynomials are called Gleason polynomials.
Example. We have that
Fo=a+1 and F3=a(a+1)P +1.
We now prove Lemma [3] i.e., that the roots of the Gleason polynomials are

simple.
Proof of Lemma [Bl For p > 1, we have
Fppi=aFP +1 and F,, ,=F’+DFP'F/=F” mod D.
Since F), is monic,
discriminant(Fj,11) = resultant(anD +1, Ff) mod D=1 mod D.

In particular, the discriminant does not vanish and Fj,; has simple roots. O

For p > 1, let A% be the set of parameters a € Ap such that 0 is periodic for f,
with period p. Moreover, let G}, be the monic polynomial which has simple roots
exactly at the points a € AY,.

Lemma 9. Forp > 1, the constant coefficient of Gy, is 1 and

F,=]]Ga

qlp

Proof. For p = 1, we have that G; = F; = 1. For p > 2, the roots of F}, are
exactly the parameters a € A%, with ¢ dividing p. Since F), has simple roots and
all polynomials are monic, we have the required factorization.

For p > 1, the constant coefficient of Fj, is 1. In addition, G; = 1. It follows by
induction on p > 1 that the constant coefficient of G, is 1. O

Milnor [M2] asked whether the polynomials G, are irreducible over Q. Proposi-
tion [5| asserts that this is not true in general. We shall now prove this proposition.
Note that

Gz =ala+1)P +1.

We must prove that G3 is reducible over Q if and only if D =1 mod 6 and that
in this case, G has exactly two irreducible factors, one of which is 1+ a + a?. This
is in fact a result of Selmer [S] that we reproduce here.
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Proof of Proposition On the one hand, if D = 1 mod 6, then a? + a + 1
divides G3. Indeed, let w # 1 be a cube-root of unity. Then w + 1 is a 6-th root of
unity and

Giw)=ww+ D +1=ww+)+1=w?+w+1=0.
On the other hand, observe that
Gs(a) = P(a+1) with P(z):=zP(@ 1) +1=2P 2P 1.

If G5 is reducible over Q, then P is reducible over Q and we may write P = P, Py
with Py € Z[z] and P, € Z[z] monic polynomials of respective degree Dy > 1 and
Dy > 1. The product of the constant coefficients of P, and P is equal to 1, so that
both are equal to € € {—1,+1}. Set

R(z) := exP?Py(z)Py(1/2) and S(z):=exP'Py(1/z)Py(x).

Note that R € Z[z] and S € Z[z] are monic polynomials with constant coefficient
D+1

equal to 1. In addition, R(z) = zP*1S(1/z), so that if R(z) = Z c;jz?, then
j=0

D41
S(z) = Z c;xP 19 Moreover,
j=0
RS = PQ with Q(z)=2P"P(1/2) =2P™ — 2 +1.

D41

Identifying the coefficients of %! on both sides yields Z c? = 3. Thus, there
j=0

are exactly three coefficients c¢; which are non zero, and they are equal to 1. We

already know that c¢pi1 = ¢g = 1. So, there exist j € [2,D] and ¢; € {—1,+1}

such that

R(z)=2P™ +¢;27 +1 and S(z) = 1+ ¢jaP ™77 4 2PFL

Comparing RS to PQ again, we see that we necessarily have j =1 or j = D and
¢j = —1. In other words, either R = P and Py(x) = exP2Py(1/z), or S = P and
Py(z) = exP1Pi(1/x). In the first case, the roots of P, are common roots of P and
Q. In the second case, the roots of P; are common roots of P and Q.

To complete the proof, observe that if z°+! — 2P 4+ 1 = 2P+ —2 4+ 1 =0, then
2P —x =0and z # 0, so that P~ = 1. Thus, 22—z +1 = 2P+ —24+1 = 0. This
shows that x is a 6-th root of unity; in particular D = 1 mod 6. In addition, P
has two irreducible factors, one of which is 22 — 2 +1. Thus, G5 has two irreducible
factors, one of which is (a +1)2 —(a+1)+1=a%+a+ 1. O

It might be interesting to study whether there are other values of D and p for
which the polynomial S, is not irreducible over Q. Adam Epstein would probably
call those algebraic conspiracies.

3. Misiurewicz polynomials

We now prove Lemma ie., if K>k >1and w” =1 with w # 1, then the
polynomial Fx — wF}, has simple roots.
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Proof of Lemma [dl We first do a preliminary comment. Let P, € Z[z] be the
minimal polynomial of o := 1 — w. Observe that

P -l=@-1)(+z+ 42" =@-1)-[[@=-0,
¢

where ¢ ranges in the set of D-th roots of unity different from 1. The constant
coefficient ¢, € Z of P, is the product of a and its Galois conjugates. It divides
[[(A-¢=1+1"+---+1P7' = D.

Now, assume ag is a root of

Fx —wFy=a-(FR_ | —wFP ) +a,
with the convention Fy := 0. Note that the monic polynomial FZ — FP € Z|d]
vanishes at ag, so that, ag is an algebraic integer. Observe that
Fie —wFy, :FI?—I 7WFk’il + Da - (Fll()—_llFI/(—l —wFlg_llF,;_l),
So, if ag were a root of Fj, — wFj, then we would have a = Dj, for some algebraic
integer
Bi=ag- (Fll(j:llFI/(—l - WFk-’i_llFlé—l)(aO)'

Let Pg € Z[y] be the minimal polynomial of 5 and let ¢ € Z be its constant
coefficient. Then,

P,(z) = D™Pg(x/D) with m := deg(Py).

As a consequence, D™cg = ¢, divides D, so that m = 1. This can occur only if
a € Q,i.e., only if w = —1. In that case, we have 2 = D3 and so, D =2 and = 1.
This proves that when D # 2 and w # —1, the roots of Fy — wF}, are simple.
It remains to prove that when D = 2, the roots of F + F) are simple. Since
Fg(0) + Fj(0) = 2, it is equivalent to prove that aFx + aF} has simple roots. Set
o0:=0and for p > 1, @, := aF,. Then, for p > 1,
Qp=aF,=a-(aF, ,+1)=Q> ;+a and Q,=2Q,1Q, ;+1=1 mod2.
In particular,
/ + !
w =14+ Qkr-1Q%_1+ Qr-1Q)_, € Zlal.
We have that
Qkx_1=1 mod2 and Q)_,=1 mod 2,
so that
1+ Qr1QK 1 +Qr1Q)_; =1+ Qk -1+ Q1 mod 2.
We also have
Qr +Qr=Q%_, +Qi_;, mod2=(Qr_1+Qxr_1)*> mod 2.
Since (Qx_1 + Qr_1)? is monic and since 1 + Q1 + Qr_1 takes the value 1 at
the roots of (Qx_1 + Qr_1)?, we have that
Qk + Q%
2

It follows that this resultant is non zero, and that the polynomials Qx + Qx and
Fy 4+ F}), have simple roots. (Il

resultant (QK + Qs ) =1 mod 2.
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We may now prove Proposition [2] i.e., if a € Ap and 0 is preperiodic for f, with
preperiod k > 2 and period p > 2, then a is an algebraic unit.

For £ > 2 and p > 1, let .A’Bp be the set of parameters a € Ap such that 0 is
preperiodic for f, with preperiod k and period p. Moreover, let G}, , be the monic
polynomial which has simple roots exactly at the points a € A]Bp . Finally, following
Milnor [MI], set

FP - FP , ‘
Fip = Fk+p 1 kal _ Z F12+p71F,§_1-
k+p—1 — k-1 i+j=D—1
The polynomials Fj,;, are called Misiurewicz polynomials. Proposition |Z| is a corol-
lary of the following lemma which asserts that for p > 2, the constant coefficient of
Gp,p is equal to 1.

Lemma 10. For k> 2 andp > 1,

Frp= gcd(p,k 1) HGk,q
qlp

The constant coefficient of Gy, p, is equal to D if p=1 and is equal to 1 if p > 2.

Proof. First, observe that the roots of Fj , are the parameters a € Ap such that
Fryp_1(a) = wFj_1(a) for some D-th root of unity w # 1. According to Lemma
Fiyp—1 —wFj_1 has simple roots. So, if Fy4p_1(a) = wFk_1(a) =0, then a is a
root of multiplicity D — 1 of Fj, ;. Otherwise, a is a simple root of F}, .

Second, Fjip—1(a) = wFk_1(a) = 0 if and only if a € A}, for some ¢ dividing
k—1 and p. And Fyyp_1(a) = wFi_1(a) # 0 if and only if £2¥(0) is periodic with
period dividing p, but fi(kfl)(O) is not periodic, i.e., if and only if a € A]Bq for
some ¢ dividing p.

Third, the constant coefficient of F}, , is equal to D : there are D terms with
constant coefficient 1 in the sum defining Fj, ,,. In addition, the constant coefficient
of Fy is 1 for all ¢ > 1. As a consequence, the constant coefficient of Hq‘p Giqis D
for all p > 1. It follows by induction on p > 1 that the constant coefficient of Gy, ,,
isequal to D if p=1and to 1 if p > 2. O

4. On a question of Baker and DeMarco

We conclude the article with the proof of Proposition[f]: if 0 and 1 are simulta-
neously (pre)periodic for g, : w — w? + a, then a € {0, —1,—2}. In fact, this is an
equivalence since

e for gp, 0 and 1 are fixed;

e for q_1, 0 is periodic of period 2 and 1 is preperiodic with preperiod 1 and
period 2 (1 — 0+ —1 + 0);

e for g_o, 0 is preperiodic with preperiod 2 and period 1 (0 +— =2+ 2+ 2)
and 1 is preperiodic with preperiod 1 and period 1 (1 — —1+ —1).

The proof relies on Lemma[TT]|below which asserts that if 0 and 1 have a bounded
orbit for ¢4, then a is contained in A(—1,1) UA(—1/4,1/2) U {—2}, where A(z,7r)
is the open Euclidean disk centered at z with radius r.

Proof of Proposition [6] assuming Lemma Denote by A the set of param-
eters a € C such that 0 and 1 are simultaneously (pre)periodic for g,. If a € A,
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the orbits of 0 and 1 are finite for ¢,, thus bounded. According to Lemma
A C A(-1,1) U A(-1/4,1/2) U {-2}. The disk A(—1/4,1/2) is contained in
the main cardioid of the Mandelbrot set Ms. It follows that the only parameter
a € A(—1/4,1/2) for which 0 is (pre)periodic is a = 0. So, A C A(—1,1)U{0, —2}.

Assume @ € ANA(—1,1). Then, ¢2%(0) = qg(k°+p°)(0) for some integers ko > 0
and pp > 1 and ¢°*1 (1) = qg(k1+p1)(1) for some integers k; > 0 and p; > 1. Note
that

Qo(a) = ¢2*otPo)(0) — ¢°*0(0) and Q1(a) := 2*F 1P (1) — ¢°*1 (1)

are polynomials in Z[a]. In particular, a is an algebraic integer. Moreover, if o’ is
a Galois conjugate of a, then Qo(a’) = Q1(a’) =0, so that o’ € A. Thus, a and its
Galois conjugates are contained in A(—1,1). It follows that a 4+ 1 and all its Galois
conjugates are contained in the unit disk. In particular, their product is an integer
contained in the unit disk, i.e., is equal to 0. Thus, a4+ 1 =0 and a = —1. O

Denote by N the set of parameters a € C such that 0 and 1 have a bounded
orbit for q,.

FIGURE 2. The set N and the boundary of A(—1,1) U A(-1/4,1/2).

Lemma 11. The set N is contained in A(—1,1) UA(=1/4,1/2) U{-2}.
Proof. For a € C and for n > 0, set
Po(a) :=q,"(0) = af3"(0) and  Qn(a) :=¢;"(1) = af;"(1/a).
According to Lemma [7] with D = 2,
a€N = |Py(a)] <2and |Qn(a)| <2 for all n > 0.
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Let us subdivide U := C\NA(=1,1) U A(—=1/4,1/2) in two pieces:
Up:={a€U; Re(a) < -1}, Uy :={acU; Re(a)>-1}.
It is enough to prove that
e |P3(a)| > 2 for a € Up~{—2} and
e |Qs(a)| > 2 for a € Uy.

Let us begin with P3(a) = a-(a®+2a%+a+1). The roots of P3 are 0, —1.7548 .. .,
—0.1225...41i0.7448 ... which do not belong to Ujy. Thus,

min | Ps| = min |Ps|.
An elementary computation yields
|Py(—1 +iy)[* = v* + 205 + 3y + 3> + 1.
Note that y? > 1 when —1 + iy € OUy. In this case
|P3(~1+iy)|* > 10 > 4.
In addition,
|Py(—1+ )| = h(cos(0)) with A(x) := —162* + 242 + 822 — 26z + 10.

Note that cos(f) € (—1,0) when —1 + e € 9Uy~{—2}. Thus, it is enough to
prove that A > 4 on (—1,0). Observe that A(z) —4 = —2(x + 1)B(z) with
B(z) := 823 — 202% + 16z — 3. We have to prove that B < 0 on (—1,0). Note
that B'(z) = 24(x — 1)(z — 2/3), so that B is increasing on (—1,0) and B < —3 on
(—1,0).

Let us now consider Q3(a) = (a+1)(a®+5a%+ 6a+1). The roots of Q3 are —1,
—0.198..., —3.24... and —1.55... which do not belong to U;. Thus,

I%illf1|Q3| = %15{1|Q3|-
An elementary computation yields
|Qs(—1+ iy)|2 =8 +69° + 5y + 9%
Note that y? > 1 when —1 + iy € OU;. In this case
1Qs(~1 +iy)|* > 13> 4.
The circles C(—1,1) and C(—1/4,1/2) intersect at the points —1/8 4+ iy/15/8. We
have that
|Qs(—1+ eie)‘2 = C(cos(d)) with C(z):=—8z" —122% + 8z + 13.
Note that cos(f) € (0,7/8) when —1 + €'’ € OU;. The derivative C’(z) vanishes at
2o = (-3 —+v21)/6 <0 and z; = (—3 +/21)/6 € (0,7/8). So, on (0,7/8),
C(z) > min(C(0),C(7/8)) > 4.
Finally,
‘Qg(—l/él + eif)/Q)‘2 = (5(cos(9))

39 , 31 5 5607 5, 25933 242593

(@)= =556 ~ 256 T 2018”1006 ° T 65536

with
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Note that cos(f) € (1/4,1) when —1/4 + € /2 € 9U;. In this case,

39 31 5607 1 25933 1 242593

5(cos(0)) > - — = 4 220 Lz > 4. O
(cos(0)) = ~556 ~ 256 T 201 22 T 4096 1 65536
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