
Geometry of the Feigenbaum map.
by

Xavier Buff
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Abstract.

We show that the Cvitanović-Feigenbaum equation can be interpreted as a linearizing equation, and
the domain of analyticity of the Feigenbaum fixed point of renormalization as a basin of attraction. As a
consequence, we give a combinatorial description of this ramified covering, and we show the surprising result
that there exist points in the boundary of this domain with three accesses from inside the domain. Besides,
there is a natural decomposition of this basin which makes it possible to recover a result of local connectivity
by Hu and Jiang for the Feigenbaum Julia set.
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Introduction.

In 1976, Feigenbaum [F1] [F2], and independently Coullet & Tresser [CT] introduced the notion of renor-
malization for real dynamical systems. In 1985, the generalization to holomorphic dynamical systems via
polynomial-like mappings, was introduced by Douady and Hubbard [DH].

In 1987, Lanford [L] gave a computer assisted proof of the existence of a fixed point for the period-doubling
renormalization operator. His result was completed by Eckmann and Wittwer [EW]. Later, Epstein [E1]
[E2] gave a proof of the existence which does not require the help of computers. Finally, in the 90’s, Sullivan
[S] proved the uniqueness of the fixed point for the period-doubling renormalization operator.

This fixed point of renormalization satisfies a functional equation known as the Cvitanović-Feigenbaum
equation:

f(z) = − 1
λ

f ◦ f(λz), 0 < λ < 1.

We will use this functional equation to study the domain of analyticity of the solution f . Epstein [E2] and
McMullen [McM] (7.3) proved that it has a maximal analytic extension – still denoted by f – to a simply
connected, open set Ŵ , dense in C. We will prove the following results.

Theorem A. The map fλ(z) = f(λz) defined on Ŵ/λ has a fixed point x0 ∈ Ŵ with multiplier −λ. Besides,
fλ is analytic on Ŵ , fλ(Ŵ ) = Ŵ , and Ŵ is the basin of attraction of the map fλ. Finally, f is a linearizer
of the map fλ.

Theorem B. All the critical points of f are simple. The critical values of f are all contained in the real
axis. Besides, the analytic extension f : Ŵ → C is a ramified covering, in the sense that for any bounded
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disk DR ⊂ C, each component of f−1(DR) is proper over DR.

Since the critical values are real, we will then study the combinatorial structure of f−1(R). We will show
that f : Ŵ → C has the same combinatorial structure as the linearizer of a Blaschke product.

There was a belief that ∂Ŵ was a Cantor bouquet. However, the following result proves that such is not
the case.

Theorem C. The boundary of Ŵ contains points with three accesses from inside Ŵ . In particular, this
boundary does not have the structure of a Cantor Bouquet.

We will finally use a natural tiling of Ŵ to study the local connectivity of the Julia set of the Feigenbaum
polynomial.

1 Renormalization and tuning.

1.1 Quadratic-like mappings.

To get more familiar with the notions of renormalization and polynomial-like mappings, one can for example
consult [DH], [McM] or [S].

Definition 1 Let us recall that a quadratic-like map f : U ′ → U is a ramified covering of degree 2 between
two topological disks U ′ and U , with U ′ relatively compact in U . One can define its filled-in Julia set K(f)
and its Julia set J(f) as follows:

{
K(f) = {z ∈ U ′ | (∀n ∈ N) f◦n(z) ∈ U ′},
J(f) = ∂K(f).

Examples. Let P (z) = z2 + c be a quadratic polynomial. If R is large enough, the restriction of P to the
disk DR centered at 0 with radius R is a quadratic-like map.

The restriction of the map f(z) = 2 cos(z)− 1.7 + .9i to the square

U ′ = {z | − 2 < Re(z) < 2, and − 2 < Im(z) < 2}

is also a quadratic-like map. Figure 1 shows this quadratic-like map and its filled-in Julia set.
Let us also recall the so-called Straightening Theorem due to Douady and Hubbard.

Theorem 1 (Straightening Theorem) If f : U ′ → U is a quadratic-like map, then there exist

• a quadratic polynomial P (z) = z2 + c,

• a neighborhood V of the filled-in Julia set K(P ) such that P : P−1(V ) = V ′ → V is a quadratic-like
map, and

• a quasiconformal homeomorphism φ : U → V with φ(U ′) = V ′, such that ∂φ = 0 almost everywhere
on K(f) and such that on U ′

φ ◦ P = f ◦ φ.

Moreover, if K(f) is connected, then P is unique.

Definition 2 Two quadratic-like maps f and g are said to be hybrid equivalent if there is a quasi-conformal
conjugacy between them, with ∂h = 0 almost everywhere on the filled-in Julia set K(f).

This defines an equivalence relation between quadratic-like mappings. The Straightening Theorem says
that the hybrid class of a quadratic-like mapping f always contains a quadratic polynomial, and that this
polynomial is unique up to affine conjugacy if the Julia set J(f) is connected.
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Figure 1: The quadratic-like map z → 2 cos(z)− 1.7 + .9i and its filled-in Julia set.

1.2 Renormalization.

Given a quadratic-like map f : U ′ → U with a connected Julia set J(f), there is always a fixed point α
which is either non-repelling, or separating (i.e., J(f) \ {α} has several connected components). This point
is called the α fixed point of f . The other fixed point is called the β fixed point of f .

Definition 3 Let f : U ′ → U be a quadratic-like map with connected Julia set, and let ω be its critical
point. We say that f is renormalizable with period n > 1 if there exist an integer n > 1, and open disks
V ′ ⊂ V ⊂ C containing ω, such that

• the map f◦n : V ′ → V is a quadratic-like map,

• its Julia set J0 is connected, and

• the small Julia sets Ji = f◦i(J0), i = 1, . . . , n− 1, intersect J0 at most at its β fixed point.

The quadratic-like map f◦n : V ′ → V is called a renormalization of f . Note that there are several
possible choices of domains. Hence, there are several possible renormalizations of a given period. However,
when the Julia set of the renormalization is connected, the problem can be solved by defining germs of
quadratic-like maps. This will be done later.
Example. Figure 2 shows the Julia set of the polynomial P (z) = z2 − 1.75, together with the first three
forward images of the disk ∆0 = {z / |z| < .25}. The map P ◦3 : ∆0 → ∆3 is a quadratic-like map, and its

∆0

∆3

∆1
∆2

J(P)

Figure 2: The polynomial P (z) = z2 − 1.75 is renormalizable.
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Julia set (which looks like a cauliflower) is connected. Hence, P is renormalizable.
Now, given a quadratic polynomial P which is renormalizable; we let f = P ◦n : V ′ → V be a renormal-

ization. One can construct a new quadratic polynomial by straightening the map f . The inverse process is
called tuning.

1.3 Tuning.

More precisely, given a parameter c in the Mandelbrot set M , such that 0 is a periodic point of period p for
the polynomial Pc(z) = z2 + c, Douady and Hubbard [DH] have constructed a tuning map, x → c ∗ x, which
is a homeomorphism of M into itself, sending 0 to c, and such that if x 6= 1/4, then fc∗x is renormalizable
with period p, and the corresponding renormalization is in the same inner class as Px. This is the way they
show there are small copies of the Mandelbrot set within itself (see figure 3).

Figure 3: The Mandelbrot set and two small copies corresponding to renormalization of period 3.

The central object in our study is the Feigenbaum polynomial. One can define this polynomial as the
unique real polynomial which is a fixed point of tuning by −1. In other words, the Feigenbaum parameter
cFeig = −1.401155..., is the unique real parameter in the intersection of all the copies of M obtained by
tuning by −1. This intersection is not known to consist of a single point, but its real trace is known to be
reduced to a single point. Figure 4 shows the location of the parameter cFeig in the Mandelbrot set, and
Figure 5 shows the Julia set of the Feigenbaum polynomial.

The Feigenbaum polynomial is the most famous example of polynomial to be infinitely renormalizable.
By construction, the Feigenbaum polynomial, PFeig, is renormalizable with period 2, i.e., there exist domains
U ′ and U such that f = P ◦2 : U ′ → U is a quadratic-like mapping with connected Julia set. There are
several possible choices of domains, hence several renormalizations. However, all have the same Julia set,
and are equal on this Julia set.

Definition 4 We will say that two quadratic like maps f : U ′ → U and g : V ′ → V with connected Julia
set define the same germ [f ] of quadratic-like map if J(f) = J(g) and f |J(f) = g|J(g).

We can define a renormalization operator R2 in the following way.

Definition 5 Assume [f ] is a germ of a quadratic-like map which is renormalizable with period 2. There
exist open sets U ′ and U such that the map g : U ′ → U defined by g = f◦2|U is a polynomial-like map with
connected Julia set. The renormalization operator R2 is defined by

R2([f ]) = [α−1 ◦ g ◦ α],

with α = g(0) = f2(0), and α(z) = αz.

We have normalized the germ so that the critical value is 1.
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cFeig

Figure 4: The location of the parameter cFeig in the Mandelbrot set.

Definition 6 Two quadratic-like germs [f ] and [g] are said to be hybrid equivalent if there exist representa-
tives f : U ′ → U and g : V ′ → V which are hybrid equivalent.

The equivalence classes are called hybrid classes of germs.
Now, let PFeig be the Feigenbaum polynomial. The Straightening Theorem says that there is a unique

polynomial Q(z) = z2 + c in the hybrid class of R2([PFeig]). This polynomial must be renormalizable with
period 2k, for all k ≥ 1. Besides, it must be a real polynomial. So it is the Feigenbaum polynomial. Hence,
we can define a sequence of germs R◦n2 ([PFeig]), n ∈ N. The following result can be found in [S], [dMvS] or
[McM].

Theorem 2 The sequence of germs R◦n2 ([PFeig]), n ∈ N, converges to a point [f ]. This germ is a fixed point
of renormalization:

R2([f ]) = [f ],

and is in the hybrid class of the Feigenbaum polynomial. It is the unique fixed point of R2.

2 The Cvitanović-Feigenbaum equation.

We will first state some results about this fixed point of renormalization. It is just a germ of quadratic-like
map. However, Epstein [E2] proved that there exists a natural representative of this germ. We think it is
worth making the construction here, to help the reader get accustomed with the tools.

First of all, we would like to recall that the fixed point [f ] of R2 is a solution of the following system of
equations (see [E2]).

Definition 7 The Cvitanović-Feigenbaum equation:




f(z) = − 1
λf ◦ f(λz),

f(0) = 1,
f(z) = F (z2), with F−1 univalent in C \ (]−∞,−1/λ] ∪ [1/λ2, +∞[).
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Figure 5: The Julia set of the Feigenbaum polynomial.

Theorem 3 Epstein (see [E2]) Let f be a solution of the equation, and let x0 be the first positive preimage
of 0 by f . Then,

• f(1) = −λ,

• f(λx0) = x0, and

• the first critical point in R+ is x0/λ, with f(x0/λ) = −1/λ.

Figure 6 illustrates Proposition 3. This graph gives the relative positions of some points on the real axis.

Theorem 4 Epstein (see [E2]) Let F be defined by the Cvitanović-Feigenbaum equation. We then have the
following results:

• it is possible to extend F−1 continuously to the boundary R of H+, and even analytically except at
points (−1/λ)n, n ≥ 1, which are branching points of type z1/2,

• the values of F−1 are never real except in [−1/λ, 1/λ2],

• the extension of F−1 to the closure of H+ is injective, and

• when z tends to infinity in H+, F−1(z) tends to a point in H− which will be denoted by F−1(i∞).

By symmetry, similar statements hold in H−. Hence, W = F−1(Cλ) is a bounded domain of C. Those
results are summarized in figure 7.

In the following, we will use the notations:

Cλ = C \ (]−∞,−1/λ] ∪ [1/λ2, +∞[),
W = F−1(Cλ),
W = {z ∈ C | z2 ∈ W},

W+ = W ∩ {z ∈ C | 0 < Arg(z) < π/2}, and
W− = W ∩ {z ∈ C | − π/2 < Arg(z) < 0}.

As W+ ∩ R = [0, x0/λ], we can deduce that W ∩ R =]− x0/λ, x0/λ[.
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x0 x0/λ

−1/λ

1λx00
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−λ

Figure 6: The graph of f on R+.

Corollary 1 The map f : W → Cλ is a quadratic-like map representing the renormalization fixed point.

Proof. The graph of f (see figure 6) makes it possible to conclude that W ⊂ Cλ, because x0 < 1. Hence
f : W → Cλ is a quadratic-like map. Besides, f has a unique critical point at 0. The corollary follows from
the uniqueness of the fixed point.

This quadratic-like map is in the hybrid class of the Feigenbaum polynomial. Thus, to obtain informa-
tions like local connectivity, Hausdorff dimension or Lebesgue measure of the Julia set of the Feigenbaum
polynomial, it is enough to know the corresponding results for the Julia set K(f) of this quadratic-like map
(see figure 8).

Definition 8 In the following, we will use the notation

Wn = f−2n

(Cλ).

Observe that since f : W → Cλ is a polynomial-like map with non-escaping critical point, the set Wn is
simply connected, Wn+1 ⊂ Wn, and K(f) = ∩Wn.

1/λ21−1/λ0

W

R

F−1(−i∞)

F

Figure 7: Maximal univalent extension of F .



Geometry of the Feigenbaum map. 8

K(f) 1/λ2−1/λ

W Cλ

Figure 8: A representative of the Feigenbaum fixed point of renormalization, and the Julia set K(f).

3 Geometry of the domain of analyticity of f .

Our first goal is to describe the geometry of the maximal domain of analyticity Ŵ of f . Epstein [E2] proved
that it is an open simply connected subset of C and McMullen [McM] (7.3) proved that this domain is a
dense subset of C. We will show that Ŵ is contained in Ŵ/λ, and that it can be seen as the basin of
attraction of a map related to f . We will then introduce a tiling and some puzzles. We will use them to
give a combinatorial description of f and to prove the local connectivity of the Julia set K(f) at the critical
point.

3.1 The domain of analyticity.

Definition 9 Let f and g be two holomorphic functions defined on open connected domains of C: Uf and
Ug. We say that g is an analytic extension of f if f = g on some non-empty open set. Moreover, if all such
analytic extensions are restrictions of a single map

f̂ : Ŵ → C,

we will say that f̂ is the maximal analytic extension of f .

Proposition 1 (see [E2]) Let f be a solution of the Cvitanović-Feigenbaum equation. It has a maximal
analytic extension

f̂ : Ŵ → C,

where Ŵ is a simply connected open subset of C.

Proof. First of all, recall that f : W → Cλ is a quadratic-like map with non-escaping critical point. Hence,
the set Wn = f−2n

(Cλ) is a simply connected open set and the map f◦2
n

: Wn → Cλ is a proper map. But
the Cvitanović-Feigenbaum equation shows that

fn =
(
− 1

λ

)n

f◦2
n

(λnz) :
1
λn

Wn → 1
(−λ)n

Cλ

is an extension of f .
Moreover, as

1
(−λ)n−1

Cλ ⊂ 1
(−λ)n

Cλ,

the range of fn−1 is contained in the range of fn. Since the domains are connected, we claim that the
inclusion also holds for the domains:

1
λn−1

Wn−1 ⊂ 1
λn

Wn.
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Indeed, consider the connected component U of Wn−1/λn−1 ∩Wn/λn which contains 0. The two mappings
fn−1 and fn coincide on this component. Besides, if the inclusion of the domains does not hold, U must have
a boundary point in Wn−1/λn−1, which is mapped by fn−1 in the interior of Cλ/(−λ)n. This contradicts
the properness of fn.

We can now define
Ŵ =

⋃

n∈N

1
λn

Wn.

The map f has an analytic extension f̂ defined on Ŵ which coincides with fn, if z ∈ Wn/λn.
Next, let us prove that we cannot extend f̂ across any point of ∂Ŵ . Any point z ∈ ∂Ŵ can be

approximated by points zn ∈ ∂(Wn/λn). On the other hand, |f̂(zn)| = |fn(zn)| tends to infinity when n

tends to infinity. Besides, z cannot be a pole since there is no isolated point in the boundary of Ŵ . Hence,
we cannot extend f̂ across any point of ∂Ŵ . This shows that f̂ is a maximal analytic extension of f

To lighten the notations, we will denote by f – instead of f̂ – the maximal analytic extension, when there
is no ambiguity. However, K(f) still denotes the Julia set of the quadratic-like restriction f : W → Cλ.

4 The map f is a linearizer.

This section is devoted to the proof of the following result.

Theorem A. The map fλ(z) = f(λz) defined on Ŵ/λ has a fixed point x0 ∈ Ŵ with multiplier −λ. Besides,
fλ is analytic on Ŵ , fλ(Ŵ ) = Ŵ , and Ŵ is the basin of attraction of the map fλ. Finally, f is a linearizer
of the map fλ.

Proof. Let us first prove that the map fλ has an attracting fixed point. In fact, we will prove a little bit
more for later purposes.

Lemma 1 The point x0 is an attracting fixed point of the map fλ(z) = f(λz). Its multiplier is −λ. Moreover
fλ : W+ → W− and fλ : W− → W+ are isomorphisms.

Remark. The fact that fλ is an isomorphism from W+ onto W− does not mean that fλ is an automorphism
of W+ ∪W−. Indeed, part of the boundary of W± is mapped inside W+ ∪W−. Hence fλ maps W+ ∪W−
onto W+ ∪W− minus a slit. This is the way fλ can have an attracting fixed point x0 inside W+ ∪W−.
Proof. The trick in the proof is that the Cvitanović-Feigenbaum equation can be translated on the following
commutative diagram:

(Ŵ , x0)
fλ−→ (Ŵ , x0)

f ↓ ↓ f

(C, 0) −→
z 7→−λz

(C, 0).

It is a linearizing equation which proves the first part of the proposition.
Next, in proposition 1, we obtained the following inclusions:

λW ⊂ W1 ⊂ W.

Hence, λW+ ⊂ W+, and since f : W+ → H− is an isomorphism, we see that fλ is an isomorphism from W+

onto its image. On the other hand,

H− = f(W+) = − 1
λ

f ◦ f(λW+).

Hence f(fλ(W+)) = H+, and the set fλ(W+) is a preimage of H+ under f . As x0 is in the closure of W+,
x0 = fλ(x0) is in the closure of fλ(W+). Hence, we can immediately deduce that fλ(W+) = W−. We can
use the same arguments to show that fλ : W− → W+ is an isomorphism. ¤

Next, let us show that the map fλ is analytic on Ŵ . We have to show that λŴ is contained in the
domain of analyticity of f .
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Lemma 2 The domain λŴ is contained in Ŵ and fλ(Ŵ ) ⊂ Ŵ .

Proof. By construction, Wn+1 ⊂ Wn, and in the proof of proposition 1, we saw that Wn/λn ⊂ Wn+1/λn+1.
Hence,

λ
1
λn

Wn ⊂ λ
1

λn+1
Wn+1 ⊂ 1

λn
Wn.

Since the sets Wn/λn give an exhaustion of Ŵ , this proves that λŴ ⊂ Ŵ . In particular, f is defined on
λŴ .

Now, notice that f◦2
n

(Wn+1) = Wn. Hence,

f

(
λ

1
λn

Wn

)
⊂ f

(
λ

1
λn+1

Wn+1

)
=

(
− 1

λ

)n

f◦2
n

(Wn+1) =
1
λn

Wn.

This shows that f(λŴ ) ⊂ Ŵ . ¤
We will now finish the proof of Theorem A. We will prove that Ŵ is that immediate basin of attraction

of the map fλ. Since McMullen proved that Ŵ is dense in C, there cannot be any other component in the
basin of fλ.

The commutative diagram we have written tells us that the linearizer of the map fλ is f . We claim that
the domain of analyticity of the linearizer is the immediate basin of the attracting fixed point x0.

To avoid confusion let us use the name φ for the linearizer. We can always extend the linearizer to the
immediate basin of attraction using the formula:

φ(z) =
1
λn

f◦nλ (z),

where n is so chosen large enough so that f◦nλ (z) is in a neighborhood of x0 where φ is already defined. This
proves that the immediate basin of attraction is contained in Ŵ .

To show the reverse inclusion, we just need to use Lemma 2: the mapping fλ is analytic on Ŵ and maps
this domain into itself. Since Ŵ is connected, Schwartz’s Lemma shows that fλ is contracting on Ŵ for its
Poincaré metric. Hence Ŵ is contained in the immediate basin of attraction of fλ. ¤

The following two propositions are immediate applications of this result.

Proposition 2 We have the following inclusion of sets.

λK(f) ⊂ K(f) ⊂
⋃

n∈N

K(f)
λn

⊂
⋂

n∈N
λnŴ ⊂ Ŵ ⊂ Ŵ

λ
.

Proof. The set λK(f) is the Julia set K(f◦2) of the renormalization

f◦2 : λW → λCλ.

This Julia set is contained in K(f). The inclusion

K(f) ⊂
⋃

n∈N
K(f)/λn

follows immediately.
The inclusion Ŵ ⊂ Ŵ/λ is given by Lemma 2. The inclusion

⋂

n∈N
λnŴ ⊂ Ŵ

follows immediately from this one.

Lemma 3 The sets K(f)/λn, (n ∈ N), are all contained in Ŵ .
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Proof. The domain Ŵ is the union of the sets Wn/λn. But K(f) ⊂ Wn = f−2n

(Cλ). Hence, for all n ∈ N,

K(f)/λn ⊂ Wn/λn ⊂ Ŵ .

¤
The remaining inclusion ⋃

n∈N

K(f)
λn

⊂
⋂

n∈N
λnŴ

follows from this lemma.
McMullen proved that the union

⋃
n∈NK(f)/λn is dense in C. Hence Ŵ is a dense open subset of C. As

K(f) is a compact set with empty interior, the inclusions are strict because of Baire’s Theorem: a countable
union of closed sets with empty interior cannot be equal to a countable intersection of dense open sets.

We have used those informations to draw the boundary of Ŵ . Figure 9 shows a blow-up near the critical
point of the Feigenbaum Julia set. The points which are colored in black correspond to points in the boundary
of Ŵ . In the next section, we will describe a tiling of the domain Ŵ . We would like to mention that Epstein
has a very nice picture of the domain of analyticity Ŵ (see [E2]).

Finally, the intersection of the contractions λnŴ can be defined dynamically.

Proposition 3 The intersection of all the sets λnŴ is the set of points whose orbit under iteration of
f : Ŵ → C stay in Ŵ : ⋂

n∈N
λnŴ = K̂ = {z ∈ Ŵ | (∀n ∈ N) f◦n(z) ∈ Ŵ}.

Proof. To show this equality, note that

K̂ =
⋂

n∈N
f−n(Ŵ ).

We have noticed that f(λŴ ) = fλ(Ŵ ) = Ŵ . Moreover, in a neighborhood of the origin,

f(z) = − 1
λ

f ◦ f(λz).

This equality has to be true whenever both sides are simultaneously defined. The left-hand side is defined on
Ŵ . When z ∈ Ŵ , fλ(z) ∈ Ŵ , and the right-hand side of the equality is defined. The Cvitanović-Feigenbaum
equation holds on the whole domain Ŵ .

As f−1(Ŵ ) = λŴ , it follows by induction on n that f−(2n−1)(Ŵ ) = λnŴ . Indeed, the Cvitanović-
Feigenbaum equation shows that

f−1(z) =
1
λn

f−2n

(λnz).

Hence,
f−2n

(λnŴ ) = λnf−1(Ŵ ) = λn+1Ŵ .

Replacing λnŴ by f−(2n−1)(Ŵ ) shows that the induction property holds for n + 1. The Theorem follows
immediately from this observation.

5 Combinatorial description of the map f : Ŵ → C.

5.1 The map f : Ŵ → C is a ramified covering.

Theorem B. All the critical points of f are simple. The critical values of f are all contained in the real
axis. Besides, the analytic extension f : Ŵ → C is a ramified covering, in the sense that for any bounded
disk DR ⊂ C, each component of f−1(DR) is proper over DR.
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W+/λ

γ2/λ

γ1/λ

x1

W+

W−

0

Figure 9: The domain of analyticity of the Feigenbaum fixed point of renormalization. Everything which is
not black, is in the domain of analyticity. The map f sends light tiles to H− and dark tiles to H+.
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Proof. Remember that on Wn/λn, the map f coincides with
(
− 1

λ

)n

f◦2
n

(λnz).

The critical points of f◦2
n

in Wn are preimages of 0 by the polynomial-like map f : W → Cλ. Those are
all simple critical points. By rescaling with a factor (−1/λ)n we see that the critical points of f in Wn/λn

are simple. Since Ŵ is the union of the sets Wn/λn, the statement for critical points follows.
The critical orbit of the polynomial-like map f : W → Cλ is contained in the real axis. Hence, rescaling

with a factor (−1/λ)n, we see that the critical values of f are all contained in the real axis.
To finish the proof of Theorem B, we need the following lemma.

Lemma 4 If U ⊂ Ŵ is not relatively compact in Ŵ , then f(U) is not relatively compact in C.

Remark. This lemma implies for example that f has no singular value in C.
Proof. Remember that the set Wn has been defined via the quadratic-like map f : W → Cλ as

Wn =
{

z ∈ W
∣∣ f◦2

n

(z) ∈ Cλ

}
;

In particular, Wn is relatively compact in Wn−1. Hence, Wn/λn is relatively compact in the domain of
analyticity of fλ: Ŵ/λ. Besides,

fλ

(
1

λn+1
Wn+1

)
=

(
− 1

λ

)n

f◦2
n

(Wn+1) =
1
λn

Wn.

Thus, f◦nλ is analytic on a neighborhood of Wn/λn, and maps Wn/λn to W .
Now, if U ⊂ Ŵ is not relatively compact in Ŵ , we have only two possibilities:

• either U is entirely contained in one of the sets Wn/λn; in that case U contains a point in Wn/λn∩∂Ŵ .
Those points are mapped by f◦nλ to x1, −x1, x1 or −x1. Hence f◦nλ (U) is contained in W and contains
one of those points, let’s say x1. Since f(z) tends to infinity when z ∈ W tends to x1, and since

f(U) =
(
− 1

λ

)n

f (f◦nλ (U)) ,

we see that U cannot be compact in C;

• or U intersects the boundary of infinitely many sets Wn/λn; in that case, its image has to intersect
the boundary of infinitely many sets Cλ/λn and is not compact in C.

¤
We now come back to the proof of Theorem B. The critical points of f are discrete in Ŵ (since otherwise

f ′ would be identically 0). Hence, to see that f is a ramified cover, it is enough to show that for any disk
DR ⊂ C centered at 0 with radius R, the connected components of f−1(DR) are relatively compact in Ŵ .

So, we let V ⊂ Ŵ be a neighborhood of x0 such that f : V → C is an isomorphism onto the disk centered
at 0 of radius r, and we suppose that f−1(DR) has a connected component U which is not relatively compact
in Ŵ . By lemma 4, the sets f◦nλ (U) are never relatively compact in Ŵ . Indeed,

• either U is relatively compact in the domain Ŵ/λ of fλ; in that case, U contains a point of the
boundary of the basin, fλ(U) also since fλ is analytic on a neighborhood of U ,

• or U is not relatively compact in Ŵ/λ and fλ(U) is not compact in C.

Besides, since every point in U is attracted by x0 ∈ V , there exists an integer n0 such that f◦n0
λ (W )∩V 6= ∅.

Since fλ(V ) ⊂ V , for every n ≥ n0, f◦nλ (W )∩ V 6= ∅, and since W is connected there exists a point wn ∈ W
such that f◦nλ (wn) ∈ ∂V . Hence,

R ≥ |f(wn)| =
∣∣∣∣
f(f◦nλ (wn))

(−λ)n

∣∣∣∣ =
r

λn
,

which gives a contradiction if n is large enough so that R < r/λn.
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5.2 Defining a tiling of the domain of analyticity.

Given a point x ∈ Ŵ , the orbit of x under fλ is attracted by the fixed point x0. Hence, either the orbit is
eventually contained in the real axis, or the orbit eventually enter the pieces W±.

Definition 10 For any x ∈ Ŵ , if f◦nλ (x) ∈ W± then the puzzle piece Px around x is the connected component
of f−n

λ (W±) that contains x. We will say that p is a tile of Ŵ if and only if p = P x ∩ Ŵ for some
x ∈ widehatW . The set of tiles will be denoted by P

Ŵ
and we will call it a tiling of Ŵ .

Remark. Since fλ exchanges the two sets W+ and W−, the definition of the puzzle pieces Px does not
depend on the choice of the integer n such that f◦nλ (x) ∈ W±. In particlar, if p1 ∈ P

Ŵ
and p2 ∈ P

Ŵ
are two

tiles, then
◦
p1 ∩ ◦

p2= ∅.
Figure 9 shows the tiling of Ŵ . The purpose of this section is to give a combinatorial description of this

tiling. Notice that since the critical values of f - hence of fλ - are contained in R, if Px is a puzzle piece
around x ∈ Ŵ , then, for n large enough, f◦nλ : Px → W± is a non-ramified covering, and since W± is simply
connected, it is an isomorphism. Observe also that W+ ∪W− is a neighborhood of the fixed point x0 of fλ.
Hence, every point in the basin Ŵ of fλ is contained in a tile. In other words,

Ŵ =
⋃

p∈P
Ŵ

p.

Besides, the tiling is defined by pulling by the mapping fλ, but since f is its linearizer, it will give some
information about f .

Lemma 5 Let Px be a puzzle piece around x ∈ Ŵ . Then f(Px) = H± and f : Px → H± is an isomorphism.

Proof. Since the linearizer of fλ is the mapping f itself, we can write:

f(z) =
(
− 1

λ

)n

f ◦ f◦nλ (z).

But, if Px is a puzzle piece, there exists an integer n such that f◦nλ : Px → W± is an isomorphism (observe
also that if f◦nλ is an isomorphism from Px onto W+, then f

◦(n+1)
λ is an isomorphism from Px onto W−).

Hence,

f(Px) =
(
− 1

λ

)n

f(W±) = H∓.

The result follows, since f : W± → H∓ is an isomorphism. ¤
This shows that we could have defined the puzzle pieces as the connected components of Ŵ \ f−1(R).

Hence, if we give a combinatorial description of the tiling, we will at the same time give a combinatorial
information on how the critical points of f : Ŵ → C are related.
Remark. This won’t give any information about the relative position of the critical values.

Observe also that the points that are in several tiles are mapped by f to R. Since f has only simple
critical points (Theorem B), any point z ∈ Ŵ belongs to exactly 1, 2 or 4 tiles. The points belonging to four
tiles are the critical points of f .

Lemma 6 Let p be any tile. Then there exists a homeomorphism φp : H+ ∪ R → p, such that φ(Z) is the
set of critical points of f contained in p.

Proof. We first claim that for any tile p,

• f : p → H± ∪ R is a homeomorphism,

• the set Z of critical values of f |p is discrete in R, and

• Z accumulates on both −∞ and +∞.
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Indeed, this has already been proved in Theorem 4 for the tiles W± ∩ Ŵ : the set of critical values of f |∂W±
is {(−1/λ)k | k ∈ N}. Now, if p is any tile, we know that f :

◦
p→ H± is an isomorphism (lemma 5), and that

there exists an n such that f◦nλ :
◦
p→ W± is an isomorphism that extends analytically in a neighborhood of

p. Since

f =
(
− 1

λ

)n

f ◦ f◦nλ ,

we see that the set Z of critical values of f |p is discrete and contains the set {(−1/λ)k | k ≥ n}. Hence it
accumulates on both −∞ and +∞.

Next, observe that for any discrete set Z in R that accumulates both on −∞ and +∞, there exists a
homeomorphism h : H+∪R→ H+∪Rmapping Z to Z. Then, the homeomorphism φp = f−1◦h : H+∪R→ p
provides the required homeomorphism. ¤

5.3 Quadratic tilings.

We will first define a notion of a quadratic tiling of a simply connected open domain U ⊂ C. We will
then prove that given two quadratic tilings of simply connected domains U and U ′, there always exist a
homeomorphism between U and U ′ mapping tiles to tiles.

Definition 11 A quadratic tiling of a simply connected open domain U ⊂ C is a set P of subsets of U such
that any point z ∈ U belongs to exactly 1, 2 or 4 tiles (in particular U =

⋃
p∈P p), and for each tile p ∈ P

there exist a homeomorphism φp : H+ ∪ R→ p such that

• if z ∈ H+, then φp(z) belongs to exactly 1 tile,

• if z ∈ Z, then φp(z) belongs to exactly 4 tiles,

• if z ∈ R \ Z, then φp(z) belongs to exactly 2 tiles and

• when z ∈ H+ satisfies |z| → +∞, then φp(z) tends to a point φp(∞) in the boundary of U .

We will say that (U,P) is a tiled domain. The points belonging to four tiles will be called “corners”, the
closure of the connected components of the set of points belonging to exactly two tiles will be called “edges”,
and the point φp(∞) will be called “the point at infinity in p”.

Remark. This definition has been given so that the tiling P
Ŵ

is a quadratic tiling of Ŵ .
Now, given a tiled domain (U,P), a sub-tiling is a subset P of P such that the union of tiles p ∈ P

is connected and remains connected when the corners are removed. Let us say that h : p → p′ is a tile
homeomorphism if h is a homeomorphism between two tiles, respecting the boundary structure, i.e., sending
corners and edges of p to corners and edges of p′. A sub-tiling homeomorphism between two sub-tilings P
and P ′ is a homeomorphism

h :
⋃

p∈P

p →
⋃

p′∈P ′
p′

such that the restriction to any tile p ∈ P is a tile homeomorphism. Finally, a tiling homeomorphism between
two tiled domains (U,P) and (U ′, P′) is a sub-tiling homeomorphism between P and P′.

Proposition 4 Given any two tiled domains (U,P) and (U ′, P′) there exists a tiling homeomorphism between
them.

Proof. Let S be the set of sub-tiling homeomorphisms between sub-tilings P ⊂ P and sub-tilings P ′ ⊂ P′.
This set S is clearly non-empty, since for any tiles p ∈ P and p′ ∈ P′, there is always a tile homeomorphism
between p and p′. Besides, S can be partially ordered as follows: a sub-tiling homeomorphism h1 between
P1 and P ′1 is larger than a sub-tiling homeomorphism h2 between P2 and P ′2 if and only if

P2 ⊂ P1 and h1|
⋃

p∈P2

p = h2
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(note that the restriction of h1 to any sub-tiling P ⊂ P1 is always a sub-tiling homeomorphism between P
and its image). Observe that every totally ordered chain of sub-tiling homeomorphisms hi, i ∈ I, between
sub-tilings Pi and P ′i , has an upper bound which is the sub-tiling homeomorphism h between

⋃
i∈I Pi and⋃

i∈I P ′i , such that the restriction of h to Pi is equal to hi. Hence, we can apply Zorn’s lemma which shows
that there exists a maximal sub-tiling homeomorphism h between two sub-tilings P ⊂ P and P ′ ⊂ P′.

If P = P, then the set
⋃

p∈P p contains no edge in its boundary. Since h is a homeomorphism, the same
property holds for its image and P ′ = P′. Hence, in this case the proof is completed. On the other hand, if
P 6= P then the set

⋃
p∈P p contains an edge e in its boundary. We call p0 6∈ P the tile that contains e in

its boundary and e′ the image h(e). Since h is a homeomorphism, e′ is in the boundary of
⋃

p′∈P ′ p
′. We

call p′0 6∈ P ′ the tile that contains e′ in its boundary. We will show that we can extend h to a sub-tiling
homeomorphism between P ∪ {p0} and P ′ ∪ {p′0}.

Let us first show that γ = p0 ∩
⋃

p∈P p is a connected union of edges, and that h(γ) is contained in p′0. It
is obviously a union of edges of p0. Assume it is not connected. Then, there exists an edge e1 such that the
two connected components of (∂p0 \e1)∩U both intersect P . Moreover, let p1 6∈ P be the tile which contains
e1 in its boundary. Then, p0 ∪ p1 separates U in two connected components (because both tiles contain a
point at infinity in their boundary), both intersecting P . This contradicts the fact that the sub-tiling of P
is connected. To see that h(γ) is contained in p′0, observe that for any two edges e1 and e2 in γ satisfying
e1 ∩ e2 6= ∅, we have the following property: h(e1) ∈ p′0 implies that h(e2) ∈ p′0. Indeed, since e2 ∈ p0, it
is a boundary edge of P , hence its image is a boundary edge of P ′. Let p′′0 6∈ P ′ be the tile that contains
h(e2). If we set x = e1 ∩ e2, then h(x) ∈ p′′0 . But, the same argument of connectivity as above shows that
x is contained in three tiles of P , the fourth tile being p0. Hence, there is only one tile which contains h(x)
and which is not contained in P ′, and p′′0 = p′0.

Finally, given two tiles p ∈ P and p′ ∈ P′ and a homeomorphism h between a connected union γ of
edges in the boundary of p, mapping each edge to an edge of p′, there exists an extension of h to a tile
homeomorphism h̃ : p → p′. This finishes the proof of the proposition.

5.4 The tiling for a Blaschke product.

Let B(z) be a Blaschke product

B(z) = z
z − a

1− az
, a ∈]0, 1[.

Then B a fixed point at 0 with multiplier −a. The basin of this critical point is D and contains only one
simple critical point ω ∈ D. It is a classical result due to Fatou that if ψ : D → C is a linearizer of the
Blaschke product

B(z) = z
z − a

1− az
, a ∈]0, 1[,

then ψ is a ramified covering map, ramified at the inverse images of the critical point ω.
Figure 10 shows a tiling PB associated to the Blaschke product B. The tiles are the closure in D of the

connected components of D \ ψ−1(R).
The critical points of ψ are the preimages by B of the critical point ω of B contained in D. They are

simple critical points. Hence, given a point z ∈ D, we have three possibilities:

• ψ(z) ∈ H± and z belongs to exactly one tile,

• z is a critical point of ψ and z belongs to exactly four tiles since ψ has only simple critical points,

• z is not a critical point of ψ and ψ(z) ∈ R, and z belongs to exactly two tiles.

Besides, ψ maps each tile p ∈ PB to H± homeomorphically, mapping. The set of critical values of ψ|p
is of the form {ψ(ω)/ak}k≥k0 , for some k0 ≥ 0. Hence the image of the corners form a discrete set in R
accumulating on both +∞ and −∞. We can then show, as in the case of the tiling P

Ŵ
, that the tiling PB

is a quadratic tiling. Hence, by proposition 4 there exists a homeomorphism between D to Ŵ mapping the
tiles of PB to the tiles of P

Ŵ
.
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0 ω

D

Figure 10: The linearizer ψ which is tangent to the identity at 0 maps blue regions to H− and green regions
to H+.

6 Topology of the boundary of Ŵ .

The domain Ŵ is dense in C, hence its boundary has empty interior. However, it seems to have a very complex
structure. Studying its topology, its Hausdorff dimension, or its Lebesgue measure could be interesting. But
we do not have many tools at the moment. However, we will show the surprising result that there are
bi-accessible points in the boundary of Ŵ .

First of all, remember that Theorem 4 tells that the boundary of ∂W+ can be decomposed as follows.

Definition 12 The boundary ∂W+ is the union of

• an arc γ1 which is mapped by f to R+,

• an arc γ2 which is mapped by f to R−, and

• a point x1 such that (x1)2 = F−1(−i∞).

Theorem C. The point x1/λ belongs to the boundary of Ŵ , and is accessible from Ŵ with at least three
accesses.
Proof. We claim that (x1, x1) is a repelling cycle of period 2 for the map fλ. Indeed, f◦2λ is an automorphism
of W+ (see Lemma 1). Since there is an attracting fixed point in the boundary (the point x0), there must
also be a repelling fixed point on the boundary. But the only point in ∂W+ which is not in the basin Ŵ is
the point x1. Hence, x1 is a repelling fixed point for f◦2λ . Since fλ maps W+ to W−, x1 cannot be a fixed
point of fλ. This shows that x1 is a repelling periodic point of period 2 for fλ. Since the map fλ is a real
map, the other point of the cycle is x1.

In particular, x1 does not belong to the basin Ŵ , and it is in its boundary. Moreover, according to
Lemma 2, λŴ ⊂ Ŵ . Hence λ−1∂Ŵ ⊂ ∂Ŵ , so that x1/λ ∈ ∂Ŵ .

The Feigenbaum map f maps γ1 and γ2 to R+ and R−, which are contained in Ŵ . Hence, fλ maps
γ′1 = γ1/λ and γ′2 = γ2/λ inside its basin of attraction Ŵ . Moreover, the imaginary axis is also contained in
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γ′1

x1/λ

γ′3

γ′2
fλ

fλ

f−1
λ (−x1)

−x1 x1

x1 = f−1
λ (x1)

Figure 11: The arcs γ′1, γ′2 and γ′3.

Ŵ . Let us call γ′3 its inverse image by fλ|W+. The arcs γ′1, γ′2 and γ′3 are in the basin of attraction of fλ,
i.e., in Ŵ (see figure 9), and they land at the same point x1/λ which is “mapped” by f to −i∞.

We must show that those arcs do not define the same access to x1/λ. This condition is not difficult
to check (see figure 11). Those arcs cut W+/λ in two pieces which are mapped by fλ to the two quarter-
planes contained in H−. Hence, each one of those pieces contains a point which is not contained Ŵ (either
x1 = f−1

λ (x1) or f−1
λ (−x1)).

7 Local connectivity of K(f).

Definition 13 We define puzzles Pn, n ∈ N in the following way:

• the puzzle pieces of the puzzle P0 of depth 0 are the puzzle pieces Px defined in definition 10, and

• the puzzle pieces of the puzzle Pn of depth n are the pieces λnP , P ∈ P0.

Figure 12 shows some pieces of the puzzles of depth 1, 2, and 3. We have colored the puzzle pieces of
depth 2 in blue and green and the puzzle pieces of depth 3 in brown and yellow. A lot of pieces are missing,
but drawing them takes a bit of time. That is why the region covered by the puzzle pieces seem to be
disconnected, which is not the case: remember that the tiles cover a dense open subset Ŵ ⊂ C which is
connected and simply connected (see Figure 9).

Since the closure of the puzzle pieces of depth n cover the set λnŴ , and since K(f) ⊂ λnŴ for every
n ≥ 0 (see Lemma 3), we see that the closure of the puzzle pieces of depth n cover the Julia set K(f). We
will first show that the intersection of the closure of a puzzle pieces with K(f) is always connected (Lemma
7), and then we will prove that the puzzle of depth n subdivides the puzzle of depth n− 1 (Lemma 8)

Lemma 7 If P is a puzzle piece, then for all n ≥ 0, the intersection λnP ∩K(f) is connected.

Proof. Given a puzzle piece P , there exists an integer k ≥ 0 such that fk
λ (P ) = W±. We will call this k

the age of the puzzle piece, and we will prove this Lemma by induction on the age of the puzzle piece P .
For k = 0, λnW± ∩ K(f) is connected, because f◦2

n

(λnW±) is a half-plane, which cuts K(f) in two
parts along the real axis, and because K(f) is totally invariant by the polynomial-like map f : W → Cλ.

If P is a puzzle piece of age k + 1 ≥ 1, we first notice that K(f) ⊂ W . Hence,

• either λnP ∩W = ∅, and λnP ∩K(f) = ∅ is connected,

• or λnP ⊂ W .
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W+

W-

Figure 12: Some pieces of the puzzles Pi, i = 1, 2, 3.

On the other hand, fλ(P ) = Q is a puzzle piece of age k, and by inductive hypothesis, every λnQ ∩K(f),
n ∈ N, is connected. Besides,

f(λP ) =
(
− 1

λ

)n−1

f◦2
n−1

(λn−1λP ).

Hence,
f◦2

n−1
(λnP ) = (−λ)n−1fλ(P ) = (−λ)n−1Q.

Since K(f) is totally invariant by f |W , we can conclude that λnP ∩K(f) is also connected when λnP ⊂ W .
¤

We can now show that the puzzle Pn+1 subdivides the puzzle Pn. In other words, we will show the
following Lemma.

Lemma 8 (see figure 12) Every puzzle piece λP ∈ P1 is contained in a puzzle piece Q ∈ P0

Proof. Let z be a point in λP and let Q be the puzzle piece which contains z. Using the Lemma 5, we
see that f(Q) = H±. Since f(λP ) = fλ(P ) is a puzzle piece (by definition), and since puzzle pieces do not
intersect the real line (they are the connected components of Ŵ \ f−1(R), and R ⊂ f−1(R)), we know that

f(λP ) ⊂ H± = f(Q),

and as f : Q → H± is an isomorphism, we can deduce that

λP ⊂ Q.

¤
This construction makes it possible to recover the following result due to Hu and Jiang.

Theorem 5 (see figure 13) The Julia set K(f) is locally connected at the critical point.

Up to now, we can only prove local connectivity at the critical point 0:

• 0 ∈ λnW ⊂ λn−1W , and

• λnW ∩K(f) is connected.
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Figure 13: Local connectivity of the Feigenbaum Julia set at the critical point.

One can use classical arguments of recurrence to spread around this local connectivity. However, those
arguments do not exhibit a nice basis of connected neighborhoods. We would like to prove that if we consider
the nested sequence of puzzle pieces Pn(z) ∈ Pn which contain a point z ∈ K(f), then the diameter of the
piece Pn(z) decreases geometrically with n. We just need to show the following conjecture.

Conjecture 1 There exists a constant ε > 0 such that if P ∈ P0 and Q ∈ P0 are puzzle pieces and λP ⊂ Q,
then

diam(Q)
diam(λP )

≥ 1 + ε.

We think it is possible to show this conjecture using some classical arguments of moduli of annuli. Moreover,
we think that there is a stronger result.

Conjecture 2 There exists a constant K ∈ R such that the diameter of every puzzle piece P ∈ P0 is bounded
by K:

diam(P ) ≤ K.
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