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Abstract. A well-known theorem of Böttcher asserts that an analytic germ

f : (C, 0) → (C, 0) which has a superattracting fixed point at 0, more precisely

of the form f(z) = azk + o(zk) for some a ∈ C∗, is analytically conjugate
to z 7→ azk by an analytic germ φ : (C, 0) → (C, 0) which is tangent to the

identity at 0. In this article, we generalize this result to analytic maps of

several complex variables.

Introduction

An analytic germ f : (C, 0)→ (C, 0) with a superattracting fixed point at 0 can
be written in the form

f(z) = azk +O(zk+1), a 6= 0, k ≥ 2.

In 1904, L. E. Böttcher proved the following theorem.

Theorem (Böttcher). If f : (C, 0) → (C, 0) has a superattracting point at 0 as
above, there exists a germ of analytic map φ : (C, 0) → (C, 0), which is tangent to
the identity at 0 and conjugates f to the map h : w 7→ awk in some neighborhood
of 0, i.e., φ ◦ f = h ◦ φ.

The germ φ is called a Böttcher coordinate for the germ f .
Böttcher coordinates have been an essential tool in the study of complex dynam-

ics in one variable; a Böttcher coordinate gives polar coordinates near the associated
superattracting fixed point, which are compatible with the dynamics of f . In the
case of the superattracting fixed point at infinity for a polynomial, the angular
coordinate is called the external angle and its level curves are called external rays.
The importance of external angles and external rays was emphasized in [DH].

It is quite natural to ask whether there is an analogue of this theorem in higher
dimensions; that is, given an analytic germ F : (Cm, 0)→ (Cm, 0) is there an ana-
lytic germ Φ : (Cm, 0)→ (Cm, 0) which conjugates F to its terms of lowest degree?
According to Hubbard and Papadopol in [HP], “the map is not in general locally
conjugate, even topologically, to its terms of lowest degree; the local geometry near
such a point is much too rich for anything like that to be true.” Hubbard and
Papadopol present the following example to illustrate their point.

Example 1. Consider the map

F : C2 → C2 given by (x, y) 7→ (x2 + y3, y2).

Let H : C2 → C2 be the map (x, y) 7→ (x2, y2). There is no analytic conjugacy
between F and H in a neighborhood of the origin because the dynamics of the
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Figure 1. For polynomials of one complex variable, the Böttcher
coordinate of ∞ extends throughout the entire basin if the filled
Julia set is connected. The checkerboard pattern in the pictures
above highlights the external rays in each picture. On the right is
the filled Julia set of the model map, z 7→ z2, and on the left is the
filled Julia set for a quadratic polynomial.

maps are incompatible. Indeed, the critical locus of F consists of the the two axes,
which is also the critical locus of H. But the map H fixes the two axes, whereas F
fixes y = 0 and maps x = 0 to the curve t 7→ (t3, t2).

However, there is another explanation which is more relevant to our discussion.
The critical value locus of F contains the curve t 7→ (t3, t2) which has a cusp; any
smooth conjugacy would have to map this singular curve to a component of the
critical value locus of H; however, the critical value locus of H consists of x = 0
and y = 0, which are smooth. So certainly no analytic conjugacy exists.

Remark 1. In the example above, the map H is homogeneous. A homogeneous
map

H : Cm+1 → Cm+1

descends to a map on projective space h : Pm 99K Pm; the critical locus and the
postcritical locus of H will be cones over the critical locus and postcritical locus of
h.

Therefore, if F is going to be locally conjugate to a homogeneous map in a
neighborhood of 0, each component of the critical locus and postcritical locus of F
containing the superattracting fixed point, must be an analytic cone; that is, each
of these components must be the image of a cone under an analytic isomorphism.
This is a rather strong condition; the homogeneous maps certainly satisfy it, and
we will see in section 3 that there are other families of maps which satisfy this
criterion.

The following people have studied the dynamics of maps with superattracting
fixed points in higher dimensions: J.H. Hubbard and P. Papadopol develop a very
important theory of Green functions for maps with superattracting fixed points in
Cm (see [HP]), C. Favre and M. Jonsson classify contracting rigid germs of (C2, 0)
in [FJ]. Both S. Ushiki and T. Ueda have results about a Böttcher theorem in
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higher dimensions: Ushiki presents a local Böttcher theorem in C2 for maps of a
special form in [Us], and Ueda presents both local and global Böttcher theorems in
Cm for a particular family of maps in [Ue1].

In this article, we begin with an analytic germ F : (Cm, 0) → (Cm, 0), which
has an adapted superattracting fixed point at 0. We present necessary and sufficient
conditions for such an F to be locally conjugate to its quasihomogeneous part at
0. Our criteria are stated in terms of admissible vector fields; these vector fields
detect the shape of the postcritical locus of our map F to see if the analytic cone
condition in remark 1 is satisfied. The relevant definitions are given in Section 1.1.

Theorem 1 (Local Böttcher Coordinates). Let F : (Cm, 0) → (Cm, 0) be a germ
of an analytic map having an adapted superattracting fixed point at 0 ∈ Cm. Let
H : Cm → Cm be the quasihomogeneous part of F at 0 with multidegree (k1, . . . kp).
Then the following are equivalent.

(1) There is a germ of an analytic map Φ : (Cm, 0)→ (Cm, 0) such that

Φ(0) = 0, D0Φ = id and Φ ◦ F = H ◦ Φ.

(2) There is an admissible p-tuple of germs of vector fields (ξ1 . . . , ξp) such that

DF ◦ ξj = kj · ξj ◦ F
near 0 for all j ∈ [1, p].

(3) There is an admissible p-tuple of germs of vector fields (ζ1, . . . , ζp) such
that ζj is tangent to the germ of the postcritical set of F for all j ∈ [1, p].

The proof of theorem 1 is a beautiful confluence of classical results of Euler,
Poincaré, Cartan, and Arnol’d with the theory of Green functions developed in
[HP]. Sections 1.2–1.6 are devoted to presenting these results and adapting them
to our setting.

In section 2, we present a result about extending a local Böttcher coordinate Φ
to a larger a domain. More precisely let Ω be a complex analytic manifold, and
F : Ω → Ω be an analytic map with a superattracting fixed point at a ∈ Ω. The
basin of attraction of a for F is the open set of points whose orbits converge to
a. The immediate basin is the connected component of the basin containing a; we
denote the immediate basin as Ba(F ).

Theorem 2 (Global Böttcher coordinates). Let Ω be a complex analytic manifold,
F : Ω→ Ω be a proper analytic map with a superattracting fixed point at a ∈ Ω and
H : TaΩ→ TaΩ be a quasihomogeneous map. Suppose that

• there is a local isomorphism Φ : (Ω, a)→ (TaΩ, 0) with Φ ◦ F = H ◦ Φ;
• near a, Φ maps the postcritical set of F : Ba(F )→ Ba(F ) to the postcritical

set of H : B0(H)→ B0(H).
Then, Φ extends to a global isomorphism Φ : Ba(F )→ B0(H) conjugating F to H:

Ba(F ) Φ //

F

��

B0(H)

H

��
Ba(F ) Φ // B0(H).

In section 3, we apply our results to a large class of new examples of postcritically
finite endomorphisms of Pn. And finally, in section 4, we conclude with some
remaining questions.



4 X. BUFF, A.L. EPSTEIN, AND S. KOCH

Acknowledgements. We would like to thank our colleagues for their constant
support, and stimulating discussions. In particular, we thank John H. Hubbard,
Curtis T. McMullen, John Milnor, and Saeed Zakeri.

1. The Local Result

1.1. Set Up. In section 1.1, we will use the following notation.
• E is a C-linear space of dimension m ≥ 1.
• 〈·|·〉 is a Hermitian product on E.
• ‖ · ‖ is the associated norm.
• E = E1 ⊕ · · · ⊕ Ep is the direct sum of p ≥ 1 linear spaces.
• (πj : E → Ej)j∈[1,p] are the projections associated to the direct sum.
• for v ∈ E, we denote vj :=πj(v) ∈ Ej .
• For F : (E, 0)→ (E, 0) an analytic germ, we denote Fj :=πj ◦ F : E → Ej .
• if (Hj : Ej → Ej)j∈[1,p] are maps, then H1 ⊕ · · · ⊕Hp is the map

E 3 v1 + · · ·+ vp 7→ H1(v1) + · · ·+Hp(vp) ∈ E.

• (πj : E → Ej)j∈[1,p] are the projections associated to the direct sum.
• k1, . . . , kp are integers greater than or equal to 2.

The word adapted in the definition 1 refers to this data.
Recall that a map H : L → L on a C-linear space L is homogeneous of degree

k ≥ 1 if
∀v ∈ L, H(v) = φ(v, . . . , v︸ ︷︷ ︸

k times

)

for some k-linear map φ : Lk → L. Equivalently, H is analytic and

∀λ ∈ C, ∀v ∈ L, H(λv) = λkH(v).

The homogeneous map H is nondegenerate if H−1{0} = {0}.

Definition 1. An analytic germ F : (E, 0) → (E, 0) has an adapted superat-
tracting fixed point if for all j ∈ [1, p], there is a nondegenerate homogeneous map
Hj : Ej → Ej of degree kj ≥ 2 such that

Fj(v) =
v→0

Hj ◦ (vj) + o
(
‖(vj)‖kj

)
.

The map H1⊕ · · · ⊕Hp is the quasihomogeneous part of F at 0 and (k1, . . . , kp) is
its multidegree.

Note that the derivative of a map at an adapted superattracting fixed point
necessarily vanishes. The particular form of Fj implies the following invariance
property.

Proposition 1. The spaces E>j :={vj = 0} and Ej are locally totally invariant
under F ; that is, there exists a neighborhood V of 0 such that

F−1(E>j ) ∩ V = E>j ∩ V and F−1(Ej) ∩ V = Ej ∩ V.

Proof. Let us first prove that E>j is locally totally invariant. First, if vj = 0, then
Fj(v) = 0. This shows that near 0, E>j ⊆ F−1(E>j ). So if E>j were not locally
totally invariant, we could find an analytic germ

γ : (C, 0)→ (F−1(E>j ), 0) with γj :=πj ◦ γ 6≡ 0.
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The order of vanishing m of γj at 0 would be finite. Since Hj is nondegenerate with
degree kj , the order of vanishing of Hj ◦γj would be kj ·m. So the order of vanishing
of Fj ◦ γ = Hj ◦ γj + o

(
‖γj‖kj

)
would be kj ·m <∞ which is a contradiction since

by assumption Fj ◦ γ ≡ 0.
Next, note that

Ej =
⋂
i 6=j

E>i .

Since the spaces E>i are locally totally invariant, it follows that the space Ej is
locally totally invariant. �

We want to give necessary and sufficient conditions for the existence of an iso-
morphism Φ : (E, 0)→ (E, 0) conjugating F to its quasihomogeneous part H, i.e.,
such that Φ ◦ F = H ◦Φ. Such an isomorphism is called a Böttcher coordinate for
F .

For v ∈ E, there is a canonical isomorphism between the C-linear space E and
the tangent space TvE. Together, these isomorphisms induce a canonical bundle
isomorphism between TE and E ×E. If (v, w) ∈ E ×E, we shall denote by (v;w)
the corresponding tangent vector in TvE. If F : U ⊆ E → E is an analytic map,
we denote DvF : TvE → TF (v)E the derivative of F at v ∈ U . We denote by
DF : TU → TX the bundle map (v;w) 7→ DvF (v;w). We shall denote by F ′(v;w)
the vector in E corresponding to DF (v;w) ∈ TF (v)E.

Definition 2. Let ϑrad and ϑ1, . . . , ϑp be the linear vector fields E → TE defined
by

∀v ∈ E, ϑrad(v):=(v; v) and ϑj(v):=
(
v; vj

)
.

Note that ϑrad = ϑ1 + · · ·+ ϑp.

Definition 3. A vector field ξ is asymptotically radial if ξ is defined and analytic
near 0 ∈ E with ξ(v) =

v→0
ϑrad(v) + o

(
‖v‖
)
.

A p-tuple of vector fields (ξ1, . . . , ξp) is admissible if

• for all j ∈ [1, p], ξj is defined and analytic near 0 in E, ξj is tangent to Ej,
ξj vanishes when vj = 0 and ξj(v) =

v→0
ϑj(v) + o

(
‖v‖
)
, and

• for all i ∈ [1, p] and all j ∈ [1, p], the vector fields ξi and ξj commute.

The tangency condition in Theorem 1 requires some explanation. We say that
an analytic vector field ζ on an open set U is tangent to an analytic set A ⊆ U if
ζ(a) belongs to the tangent space TaA for every a in the smooth part of A. We
say that a germ of an analytic vector field ζ at 0 is tangent to the germ of the
postcritical set of F if there is a neighborhood U of 0 such that

• F and ζ are defined and analytic on U ,
• F : U → F (U) ⊆ U is proper and
• the vector field ζ is tangent to the critical value set of F ◦n : U → F ◦n(U)

for all n ≥ 1.

When F is not postcritically finite, the postcritical set of F is not analytic and
the third condition involves tangency to a priori infinitely many analytic sets.
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1.2. Quasihomogeneous Maps. Let L be a C-linear space. If H : L → L is a
homogeneous map of degree k ≥ 1, then

(1) DH ◦ ϑrad = k · ϑrad ◦H.

This is known as Euler’s identity. In fact, the converse is true. If H : (L, 0)→ (L, 0)
is a germ of an analytic map, then H is the germ of a homogeneous map of degree
k ≥ 1 if and only if DH ◦ ϑrad = k · ϑrad ◦H near 0. We shall adapt this result to
our setting as follows.

Definition 4. A map H : E → E is quasihomogeneous of multidegree (k1, . . . , kp)
if there are homogeneous maps Hj : Ej → Ej of degree kj with H = H1⊕ · · · ⊕Hp.

The following two lemmas about quasihomogeneous maps will be used later.

Lemma 1. Let X ⊂ E be such that near 0, the set H−1X coincides with the graph
of a function ϕ : (E>j , 0)→ (Ej , 0). Then X = H−1X = E>j near 0.

Proof. Due to the structure of H = Hj ⊕H>j : Ej ⊕ E>j → Ej ⊕ E>j , and due to
the homogeneity of Hj , we have that

H(e2πi/kjvj + v>j ) = Hj(e2πi/kjvj) +H>j (v>j ) = Hj(vj) +H>j (v>j ) = H(vj + v>j ).

So
vj + v>j ∈ H−1X ⇐⇒ e2πi/kjvj + v>j ∈ H−1X.

Since near 0, the set H−1X coincides with the graph of ϕ, we have

vj = ϕ(v>j ) ⇐⇒ e2πi/kjvj = ϕ(v>j )

for vj sufficiently close to 0. Thus ϕ ≡ e−2πi/kjϕ and so ϕ vanishes identically near
0. This shows that H−1X = E>j near 0, which implies that X = E>j near 0. �

Lemma 2. Let H : (E, 0)→ (E, 0) be a germ of an analytic map. Then, H is the
germ of a quasihomogeneous map of multidegree (k1, . . . , kp) if and only if

∀j ∈ [1, p], DH ◦ ϑj = kj · ϑj ◦H.

Proof. Assume H = H1 ⊕ · · · ⊕ Hp with Hi : Ei → Ei homogeneous of degree
ki ≥ 1. Then, Hi(vi) = φi(vi, . . . , vi) with φi : Eki

i → Ei a symmetric ki-linear
map and so, H ′i(vi;wi) = ki · φi(vi, . . . , vi, wi). Thus, for all v:=v1 + · · ·+ vp ∈ E,

H ′(v; vj) =
p∑
i=1

ki · φi
(
vi, . . . , vi, πi(vj)

)
= kj · φj(vj , . . . , vj) = kj ·Hj(vj).

This shows that DH ◦ ϑj(v) = kj · ϑj ◦H(v).
Conversely, assume DH ◦ ϑj = kj · ϑj ◦H for all j ∈ [1, p]. In other words,

∀j ∈ [1, p], H ′(v; vj) = kj · πj ◦H(v).

Let (Uj ⊆ Ej)j∈[1,p] be neighborhoods of 0 such that
• H is analytic on U :=U1 + . . .+ Up and
• if vj ∈ Uj and |λ| ≤ 1, then λvj ∈ Uj

Let v = v1 + · · ·+ vp be a point in U . Fix j ∈ [1, p]. The map

χj : (λ1, . . . , λp) 7→ πj ◦H(λ1v1 + . . .+ λpvp)
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is defined and analytic in a neighborhood of the closed polydisk Dp. In addition,
for all i ∈ [1, p],

∂χj
∂λi

(λ1, . . . , λp) = πj ◦H ′(λ1v1 + . . .+ λpvp; vi)

=
1
λi
· πj ◦H ′(λ1v1 + . . .+ λpvp;λivi)

=
ki
λi
· πj ◦ πi ◦H(λ1v1 + . . .+ λpvp).

If i 6= j, then ∂χj/∂λi = 0, which shows that χj only depends on λj . In addition

(2)
∂χj
∂λj

=
kj
λj
· πj ◦ χj .

Let Hj : (Ej , 0) → (Ej , 0) be the restriction of πj ◦ H to Ej . The previous
discussion shows that

∀(λ1, . . . , λp) ∈ Dp, χj(λ1, . . . , λp) = χj(0, . . . , 0, λj , 0, . . . , 0) = Hj(λjvj).

In particular, taking λ1 = · · · = λp = 1, we have that πj ◦H(v) = Hj(vj), and so
H = H1 ⊕ · · · ⊕Hp.

Finally, the differential equation (2) implies that

∂Hj(λvj)
∂λ

=
kj
λ
Hj(λvj).

Consider the map
ψ : λ 7→ λ−kjHj(λvj)

which is defined and analytic in a neighborhood of D. Its derivative satisfies

ψ′(λ) = −kjλ−kj−1Hj(λvj) + λ−kj
kj
λ
Hj(λvj) = 0.

As a consequence, ψ(λ) = ψ(1) for all λ ∈ D. So Hj(λvj) = λkjHj(vj) and Hj is
the germ of a homogeneous map of degree kj . �

1.3. Linearizability of analytic vector fields. The following result is due to
Poincaré. We include a proof for completeness.

Lemma 3 (Poincaré). Any asymptotically radial vector field ξ is linearizable: there
is a germ of an analytic map Φ : (E, 0) → (E, 0) such that Φ(0) = 0, D0Φ = id
and DΦ ◦ ξ = ϑrad ◦ Φ.

Proof. Let J be defined in neighborhood of 0 in E by

J(v):=
Re
〈
ξ(v)|v

〉
‖v‖2

.

Since ξ is asymptotically radial, we have that

J(v) =
v→0

1 +O
(
‖v‖
)
.

So, there are constants C and r > 0 such that

∀v ∈ B(0, r),
∣∣J(v)− 1

∣∣ ≤ C‖v‖ ≤ 1/2.

In particular, ξ is outward pointing on the boundary of B(0, r). Let Ft(v) = F(t, v)
be the flow of the vector field ξ. Since ξ is outward pointing on the boundary of
B(0, r), the map Ft is defined and analytic on B(0, r) for all t ≤ 0.
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For t ≤ 0, set Gt:= log ‖Ft‖. Then, for t ≤ 0,

∂Gt
∂t

= J ◦ Ft ≥ 1/2

and so, Gt ≤ G0 + t/2 and ‖Ft‖ ≤ ret/2. In addition,∣∣∣∣∂(Gt − t)
∂t

∣∣∣∣ = |J ◦ Ft − 1| ≤ C
∥∥Ft∥∥ ≤ Cret/2.

So,

(Gt − t)− (G0 − 0) ≤
∫ 0

t

Creu/2 du ≤ 2Cr and therefore e−t‖Ft‖ ≤ re2Cr.

For t ≤ 0, let Φt : B(0, r)→ E be the map defined by

Φt:=e−t · Ft.

Note that Φt(0) = 0, D0Φt = id. Since DFt = ξ ◦ Ft, we see that

DΦt ◦ ξ = e−t · ξ ◦ Ft = e−t ·
(
ϑrad ◦ Ft + o

(
‖Ft‖

))
= ϑrad ◦ Φt + o

(
‖Φt‖

)
.

The previous estimates show that the family (Φt)t≤0 is uniformly bounded on
B(0, r) by re2Cr. Thus, it is normal. Any limit value Φ as t → −∞ linearizes
ξ:

DΦ ◦ ξ = ϑrad ◦ Φ. �

Corollary 1. Let (ξ1, . . . , ξp) be an admissible p-tuple of germs of vector fields.
Then, the ξj are simultaneously linearizable, i.e., there is a germ of an analytic
map Φ : (E, 0)→ (E, 0) such that Φ(0) = 0, D0Φ = id and DΦ ◦ ξj = ϑj ◦Φ for all
j ∈ [1, p].

Proof. The germ of the vector field ξ:=ξ1 + · · · + ξp is asymptotically radial, thus
linearizable. Let Φ : (E, 0) → (E, 0) be the linearizer. The vector fields Φ∗ξj
commute with Φ∗ξ = ϑrad. It follows that they are linear vector fields and so,
Φ∗ξj = ϑj . �

1.4. Liftable Vector Fields.

Definition 5. Let F : U → V be an analytic map. An analytic vector field ξ on V
is liftable if there is an analytic vector field ζ on U which satisfies DF ◦ ζ = ξ ◦ F .
We say that ζ lifts ξ.

The critical point set of F is the set CF of points x ∈ U for which DxF is not
invertible. The critical value set of F is VF :=F (Cf ). If ξ is a liftable vector field
on V and if ζ lifts ξ, then for all x ∈ U − CF , we have

ζ(x) = (DxF )−1ξ ◦ F (x).

Thus, when F has discrete fibers, a liftable vector field ξ on V admits a unique lift
ζ on U and we shall use the notation

F ∗ξ:=ζ.

Lemma 4 (Arnol’d). Let F : U → V be an analytic map with discrete fibers. Let
ξ be a vector field which is analytic on V and tangent to the critical value set VF .
Then, ξ is liftable and F ∗ξ is tangent to CF .
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Proof. The vector field F ∗ξ is well defined outside the critical set. According to
a lemma of Hartogs, it is enough to show that F ∗ξ extends analytically outside a
subset of U of codimension 2 in order to know that it extends globally.

Since F has discrete fibers, the critical set CF is either empty or has codimen-
sion 1. Thus, outside a codimension 2 subset of U , the critical set CF is smooth.
Moreover, it follows from the Constant Rank Theorem that for generic x ∈ CF , the
kernel of DxF does not intersect the tangent space to CF at x.

Thus, near generic points in CF , the map F may be locally expressed as

(x1, . . . , xm−1, xm) 7→ (y1, . . . , ym−1, ym) = (x1, . . . , xm−1, x
k
m)

for some integer k ≥ 2. Since the vector field ξ is tangent to the critical value set
{ym = 0}, it is of the form

ξ = ξ1
∂

∂y1
+ . . .+ ξm−1

∂

∂ym−1
+ ymξm

∂

∂ym

and

F ∗ξ = (ξ1 ◦ F )
∂

∂x1
+ . . .+ (ξm−1 ◦ F )

∂

∂xm−1
+
(

xkm
kxk−1

m

ξm ◦ F
)

∂

∂xm

= (ξ1 ◦ F )
∂

∂x1
+ . . .+ (ξm−1 ◦ F )

∂

∂xm−1
+
(

1
k
xmξm ◦ F

)
∂

∂xm

which clearly extends analytically through the critical set {xm = 0} and is tangent
to the critical set. �

Lemma 5. Let F : U → V be an analytic map with discrete fibers, let ξ be a liftable
vector field on V , and let ζ:=F ∗(ξ) be its lift to U . Let φ(t, z) be the flow of ξ, and
ψ(t, z) be the flow of ζ.

(1) For all z ∈ U and for t sufficiently small, we have

F (φ(t, z)) = ψ(t, F (z)).

(2) If ζ ◦ F (z) = 0, then ξ(z) = 0.
(3) If ζ is tangent to an analytic set A ⊆ U , then ξ is tangent to F−1(A).

Proof. If z ∈ U − CF , then F : (U, z) → (V, F (z)) is a local isomorphism. It sends
the vector field ξ to the vector field ζ. Thus it conjugates their flows, and the
equality in part (1) holds for z ∈ U − CF and t is sufficiently small. If z ∈ CF , it
holds by analytic continuation (with respect to z).

Parts (2) and (3) follow immediately since when the flow of ζ preserves an ana-
lytic set A (which may be reduced to a point if ζ vanishes at this point), then the
flow of ξ preserves the analytic set F−1(A). �

We shall now study how admissible p-tuple of vector fields behave under pullback.

Lemma 6. Assume F : (E, 0) → (E, 0) is an analytic germ having an adapted
superattracting fixed point. Let (ζ1, . . . , ζp) be an admissible p-tuple of liftable vector
fields. Then, (k1 · F ∗ζ1, . . . , kp · F ∗ζp) is an admissible p-tuple of vector fields.

Proof. Fix j ∈ [1, p], and set ξj :=kjF ∗ζj . Since the vector field ζj is tangent to
Ej , the vector field ξj is tangent to F−1(Ej). According to proposition 1, F−1(Ej)
coincides with Ej in a neighborhood of 0. Thus, the vector field ξj is tangent to
Ej .
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Since the vector field ζj vanishes on E>j :={vj = 0}, the vector field ξj van-
ishes on F−1

j (E>j ). According to proposition 1, F−1(E>j ) coincides with E>j in a
neighborhood of 0. So ξj vanishes on E>j .

Since ξj vanishes at 0, we may write

ξj(v) = τj(v) + o
(
‖v‖
)

with τj(v):=
(
v;Aj(v)

)
for some linear map Aj : E → E. It remains to prove that τj = ϑj which amounts
to showing that Aj = πj . Since ξj vanishes on E>j , the linear map Aj vanishes on
E>j . Thus it suffices to show that the restriction of A to Ej is the identity.

The map F restricts to a self-map Fj : Ej → Ej . The vectors fields ζj and ξj
restrict to vector fields on Ej (because they are tangent to Ej). It suffices to show
that Aj(vj) = vj . We therefore restrict our analysis to the space Ej , omitting the
index j:

• F (v) = H(v) + o
(
‖v‖k

)
with H : E → E a nondegenerate homogeneous

map of degree k,
• ζ(v) = (v; v) + o

(
‖v‖
)
,

• ξ(v) = τ(v) + o
(
‖v‖
)
, and

• DF ◦ ξ = k · ζ ◦ F .
On the one hand,

DF ◦ ξ(v) =
(
F (v);F ′ ◦ ξ(v)

)
=
(
F (v);H ′ ◦ ξ(v) + o

(
‖v‖k−1 · ‖ξ(v)‖

))
=
(
F (v);H ′ ◦ τ(v) + o

(
‖v‖k

))
On the other hand,

k · ζ ◦ F (v) =
(
F (v); k · F (v) + o

(
‖F (v)‖

))
=
(
F (v); k ·H(v) + o

(
‖v‖k

))
.

It follows that H ′ ◦ τ(v) = k ·H(v), thus

DH ◦ τ(v) = k ·
(
H(v);H(v)

)
.

According to Euler’s identity, we therefore have τ(v) = (v; v) which implies that
A(v) = v as required. �

1.5. Dynamical Green Functions. We shall use dynamical Green functions in-
troduced by Hubbard and Papadopol [HP]. We will first recall the construction for
homogeneous maps, and then explain how this construction may be adapted to our
setting.

Let H : L→ L be a nondegenerate homogeneous map of degree k on a C-linear
space L of dimension m. Then, the function

uH : v 7→ 1
k

log
∥∥H(v)

∥∥− log ‖v‖

is defined and bounded on L−{0}. It follows that the sequence of plurisubharmonic
functions

GnH :=
1
kn

log ‖H◦n‖ = G0
H +

n−1∑
i=0

uH ◦ F ◦i

ki
: L→ R ∪ {−∞}

converges uniformly on L to a plurisubharmonic function GH : L → R ∪ {−∞}
which is continuous on L− {0} and satisfies

GH(v) = log ‖v‖+O(1) and GH ◦H = k · GH .
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We shall adapt this construction to our setting as follows.

Lemma 7. Let F : (E, 0)→ (E, 0) be an analytic germ having an adapted superat-
tracting fixed point. There is a neighborhood U of 0 in E such that for all j ∈ [1, p],
the sequence of functions

Gnj :=
1
knj

log
∥∥πj ◦ F ◦n∥∥ : U → R ∪ {−∞}

converges locally uniformly in U to a plurisubharmonic function Gj : U → R∪{−∞}
satisfying,

Gj(v) =
v→0

log
∥∥πj(v)

∥∥+O(1) and Gj ◦ F = kj · Gj .

Proof. Let U ⊂ E be a sufficiently small neighborhood of 0 so that F is defined
and analytic on U , F (U) ⊆ U and U is contained in the basin of attraction of 0.
The functions

Gnj :=
1
knj

log
∥∥πj ◦ F ◦n∥∥ : U → R ∪ {−∞}

are then defined and plurisubharmonic on U .
By assumption

Fj(v) = Hj(vj) + o
(
‖vj‖kj

)
.

Since Hj is nondegenerate, ‖vj‖kj = O
(
‖Hj(vj)‖

)
. Thus∥∥πj ◦ F (v)

∥∥ =
∥∥Fj(v)

∥∥ ∼
v→0

∥∥Hj(vj)
∥∥ =

∥∥Hj ◦ πj(v)
∥∥.

As a consequence, restricting U if necessary, the function

log ‖πj ◦ F‖ − log ‖Hj ◦ πj‖
is defined and bounded in U − E>j . It follows that the function

uj :=
1
kj

log ‖πj ◦ F‖ − log ‖πj‖

is defined and bounded in U − E>j .
Now, the sequence

GNj = G0
j +

N−1∑
n=0

uj ◦ F ◦n

knj
: U → R ∪ {−∞}

converges uniformly on U to a plurisubharmonic function Gj whose difference with
G0
j = log ‖πj‖ is bounded as required. �

1.6. Cartan’s Lemma. We shall use the following lemma of Cartan which is a
multidimensional version of the Schwarz Lemma. We include a proof for complete-
ness.

Lemma 8 (Cartan). Let V be a bounded connected open subset of E containing
0, let Φ : V → V be an analytic map such that Φ(0) = 0 and D0Φ = id. Then,
Φ = id.

Proof. The iterates Φ◦n are defined on V for all n ≥ 0. For n ≥ 1, let Ψn : V → E
be defined as the average

Ψn:=
1
n

n−1∑
j=0

Φ◦j .
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Then,

Ψn(0) = 0, D0Ψn = id and Ψn ◦ Φ = Ψn +
Φ◦n − id

n
.

In addition, the sequence (Ψn)n≥1 is normal. Let Ψ be a limit value. Then,

Ψ(0) = 0, D0Ψ = id and Ψ ◦ Φ = Ψ.

In particular, Ψ is invertible at 0 and Φ is equal to the identity near 0, thus in V
by analytic continuation. �

Corollary 2. Let V be a bounded connected open subsets of E containing 0, let
Φ : V →W ⊂ E be an isomorphism and Ψ : V →W be an analytic map such that
Ψ(0) = Φ(0) and D0Ψ = D0Φ. Then, Ψ = Φ.

Proof. Apply Cartan’s lemma to Φ−1 ◦Ψ : V → V . �

1.7. Proof of Theorem 1. (1) ⇒ (3). For all n ≥ 1, H◦n = H◦n1 ⊕ · · ·⊕H◦np and
the critical value set of H◦n is

VH◦n = VH◦n1
+ · · ·+ VH◦np

.

For all j ∈ [1, p] and all n ≥ 1, the critical value set of H◦nj : Ej → Ej is homo-
geneous (i.e., a complex cone with vertex at the origin). Thus, for all j ∈ [1, p],
the vector field ϑj is tangent to the critical value set of H◦n and the vector field
ζj :=Φ∗ϑj is tangent to the critical value locus of F ◦n.

For all i, j, the vector fields ϑi and ϑj commute, thus ζi and ζj commute. Since
D0Φ = id the linear part of ζj at 0 is ϑj . Since the vector field ϑj is tangent to
Ej and vanishes on E>j , the vector field ζj is tangent to Φ−1(Ej) and vanishes on
Φ−1(E>j ).

We claim that for all j ∈ [1, p], we have that Φ(E>j ) = E>j near 0. Indeed,
recall that E>j is locally totally invariant by F (see proposition 1). So X:=Φ(E>j )
is locally totally invariant by H. Since D0Φ = id, X and thus H−1X is locally the
graph of a function ϕ : E>j → Ej . According to lemma 1, X = H−1X = E>j .

It follows that Φ−1(E>j ) = E>j near 0. In particular, Φ−1(Ej) = Ej near 0
(because Ej is the intersection of all the E>i for i 6= j). Consequently, ζj is tangent
to Ej and vanishes on E>j . Thus the p-tuple of vector fields (ζ1, . . . , ζp) is admissible.

(2)⇒ (1). According to corollary 1, since (ξ1, . . . , ξp) is admissible, there exists a
germ of an analytic map Φ : (E, 0)→ (E, 0) such that D0Φ = id and DΦ◦ξj = ϑj◦Φ
for all j ∈ [1, p]. Then, Φ conjugates F to a map F̌ , defined and analytic near 0 in
E, satisfying

DF̌ ◦ ϑj = kj · ϑj ◦ F̌ .
According to lemma 2, F̌ is quasihomogeneous with multidegree (k1, . . . , kp). Since
D0Φ = id we have that F̌ = H.

(3) ⇒ (2). Let U0 be a sufficiently small neighborhood of 0 in E so that
• F is defined and analytic on U0, F (U0) ⊆ U0, and U0 is contained in the

attracting basin of 0,
• ζj is defined and analytic on U0, tangent to the critical value set of F ◦n :
U0 → F ◦n(U0) for all n ≥ 0 and all j ∈ [1, p].

Then, ζj is liftable by F ◦n and we may define a holomorphic vector field ζnj on U0

by
ζnj :=knj · (F ◦n)∗ζj .
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Then, for all n ≥ 0, we have that DF ◦ ζn+1
j = kj · ζnj ◦ F. According to lemma 6,

the p-tuple of vector fields (ζn1 , . . . , ζ
n
p ) is admissible. We will show that there is a

neighborhood V of 0 in E on which the sequence of vector fields (ζnj )n≥0 converges
uniformly to a vector field ξj for all j ∈ [1, p]. Then, the p-tuple of vector fields
(ξ1, . . . , ξp) is admissible and satisfies DF ◦ ξj = kj · ξj ◦ F for all j ∈ [1, p]. The
proof will be completed.

According to lemma 7, the sequence of functions

GnF,j :=
1
knj

log ‖πj ◦ F ◦n‖ : U0 → R ∪ {−∞}

converges locally uniformly in U0 to a function GF,j : U0 → R ∪ {−∞} which is
plurisubharmonic and satisfies

GF,j(v) =
v→0

log
∥∥πj(v)

∥∥+O(1) and GF,j ◦ F = kj · GFj
.

We set
GnF := max

j∈[1,p]
GnF,j and GF := max

j∈[1,p]
GF,j .

Note that those functions are plurisubharmonic in U0 and take the value −∞ only
at 0. In addition, the sequence of functions GnF converges locally uniformly to GF
in U0. In particular, if M > 0 is sufficiently large, the level sets {GnF < −M} are
compactly contained in U0. From now on, we assume that M > 0 is sufficiently
large so that the set

Vn:=
{
v ∈ U0 : ∀j ∈ [1, p], GnF,j(v) < −M

}
are compactly contained in U0 for all n ≥ 0.

Similarly, the sequence of plurisubharmonic functions

GnH,j :=
1
knj

log ‖πj ◦H◦n‖ : E → R ∪ {−∞}

converges locally uniformly in E to a function GHj : E → R ∪ {−∞} which is
plurisubharmonic and satisfies

GH,j(v) =
v→0

log
∥∥πj(v)

∥∥+O(1) and GHj
◦H = kj · GH,j .

We set

GnH := max
j∈[1,p]

GnH,j , GH := max
j∈[1,p]

GH,j and Wn:=
{
v ∈ E : GnH(v) < −M

}
.

According to corollary 1, there are germs of analytic maps Φn : (E, 0)→ (E, 0)
such that D0Φn = id and DΦn ◦ ζnj = ϑj ◦ Φn for all n ≥ 0 and all j ∈ [1, p].
According to lemma 2, for all n ≥ 0, the map Φn ◦ F ◦ Φ−1

n+1 : (E, 0) → (E, 0)
is quasihomogeneous, thus equal to H. In other words, we have the following
commutative diagram:

(E, 0)
Φn+1 //

F

��

(E, 0)

H

��
(E, 0)

Φn

// (E, 0).

Lemma 9. For all n ≥ 0, the linearizing map Φn is analytic on Vn.
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Proof. Let us first show that the linearizing map Φn is defined on Vn. Recall that
Φn is defined as the linearizing map of the asymptotically radial vector field

ζn:=ζn1 + · · ·+ ζnp .

Note that flowing along ζ0
j during time t < 0 decreases G0

F,j by t. It follows that
flowing along (F ◦n)∗ζ0

j during time t < 0 decreases G0
F,j ◦ F ◦n by t. Thus, flowing

along ζnj during time t < 0 decreases GnF,j by t. Finally, since the vector fields
(ζnj )j∈[1,p] commute, flowing along ζn during time t < 0 decreases GnF by t.

In particular, the flow of ζn is defined on Vn for all t < 0, every trajectory
remains in Vn and converges to 0. If we denote by Fn this flow, the linearizing map
Φn may be obtained on Vn as

Φn(v) = lim
t→−∞

e−t · Fn(t, x).

�

Since DF ◦ ζn+1
j = kj · ζnj ◦F , the analytic germ F̌ defined in a neighborhood of

0 in E by F̌ :=Φn ◦F ◦Φ−1
n+1 satisfies DF̌ ◦ϑj = kj ·ϑj ◦ F̌ . Thus, it is the germ of a

quasihomogeneous map of multidegree (k1, . . . , kp). Since, D0Φn = D0Φn+1 = id,
we have that F̌ = H. So, we have the following commutative diagram:

Vn
Φn //

F◦n

��

E

H◦n

��
F ◦n(Vn)

Φ0

// E.

Lemma 10. The function

uj := log ‖πj ◦ Φ0‖ − log ‖πj‖
is defined and bounded on U0 − E>j .

Proof. Since D0Φ0 = id, we have the a priori estimate

πj ◦ Φ0(v) =
v→0

πj(v) + o
(
‖v‖
)
.

We claim that X:=Φ0(E>j ) coincides with E>j near 0. Indeed, E>j is locally totally
invariant by F . So H−1X = Φ1(E>j ) is a graph of a function ϕ : (E>j , 0)→ (Ej , 0)
near 0. According to lemma 1, X = H−1X = E>j .

Consequently, πj ◦ Φ0 vanishes on E>j , and so

πj ◦ Φ0(v) =
v→0

πj(v) + o
(
‖πj(v)‖

)
.

The lemma follows immediately. �

Observe that

GnH,j ◦ Φn =
1
knj

log ‖πj ◦H◦n ◦ Φn‖

=
1
knj

log ‖πj ◦ Φ0 ◦ F ◦n‖ =
1
knj
uj ◦ F ◦n + GnF,j .

Setting

V :=
{
v ∈ U0 : GF (v) < −M

}
and W :=

{
v ∈ U0 : GH(v) < −M

}
,
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we deduce that GnH ◦ Φn converges uniformly to GnF on every compact subset of V .
Therefore the sequence (Φn) is uniformly bounded on every compact subset of V .
Similarly, any compact subset of W is contained in the image of Φn for n large
enough, and the sequence (Φ−1

n ) is uniformly bounded on every compact subset of
W .

Thus, the sequence of maps (Φn) is normal on any compact subset of V and
the sequence of maps (Φ−1

n ) is normal on any compact subset of W . Extracting a
subsequence, we see that there is an isomorphism Φ : V → W such that Φ(0) = 0
and D0Φ = id. According to Cartan’s lemma, any limit value of the sequence
(Φn) must coincide with Φ. Thus, the whole sequence (Φn) converges to Φ locally
uniformly in V and the sequence (ζnj = Φ∗nϑj) converges to ξj = Φ∗ϑj .

This completes the proof of theorem 1.

2. The Global Result

We will now prove Theorem 2. Since F : Ω → Ω is proper and since Ba(F )
is a connected component of F−1

(
Ba(F )

)
, the restriction F : Ba(F ) → Ba(F ) is

proper.
Let GH,j : E → R ∪ {−∞} and GH : E → R ∪ {−∞} be the dynamical Green

functions of H introduced above. Let GF,j : Ba(F )→ R ∪ {−∞} be defined by

GF,j(x) =
1
knj
GH,j ◦ Φ ◦ F ◦n(x)

where n ≥ 0 is chosen sufficiently large so that F ◦n(x) belongs to a neighborhood
of a on which Φ is defined. Let GF : Ba(F )→ R ∪ {−∞} be defined by

GF := max
j∈[1,p]

GF,j .

Let M > 0 be sufficiently large so that Φ : (E, 0) → (E, 0) has an inverse branch
defined on

W :=
{
v ∈ E : GF (v) < −M

}
.

Set V :=Φ−1(W ), so that Φ : V →W is an isomorphism. Increasing M if necessary,
we see that V is relatively compact in Ba(F ).

For j ∈ [1, p], set
ξj :=Φ∗ϑj

which is defined and analytic near 0. Then, ξj = kj · F ∗ξj near a. Since ϑj is
tangent to the postcritical set of H, and since near a Φ maps the postcritical set
of F : Ba(F ) → Ba(F ) to the postcritical set of H : B0(H) → B0(H), the vector
field ξj is tangent to the postcritical set of F : Ba(F )→ Ba(F ). In particular, ξj is
tangent to the critical value set of F ◦n for n large enough. Thus we can extend ξj
to the whole basin of attraction Ba(F ) using the formula ξj = knj · (F ◦n)∗ξj for n
large enough. We therefore have a vector field ξj which is defined and analytic on
Ba(F ) and satisfies ξj = kj ·F ∗ξj on Ba(F ). Let (t, x) 7→ Ft,j(x) be the flow of the
vector field ξj and let (t, x) 7→ Ft(x) be the flow of the vector field

ξ:=ξ1 + · · ·+ ξp.

Lemma 11. The map Ft is defined on Ba(F ) for all t ≤ 0. For all x ∈ Ba(F ), we
have that Ft(x)→ 0 as t→ −∞.
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Proof. We first want to prove that Ft is defined on Ba(F ) for all t ≤ 0. The maps
Ft,j are defined and analytic on V for all t ≤ 0. Indeed, Φ : V → W conjugates
Ft,j to the linear map

Ht,j : v1 + · · ·+ vp 7→ v1 + · · ·+ vj−1 + etvj + vj+1 + · · ·+ vp.

The equality ξj = kj ·F ∗ξj yields F◦Ft,j = Fkjt,j◦F and so, F ◦n◦Ft,j = Fkn
j t,j
◦F ◦n.

For all x ∈ Ba(F ), if n is large enough, Fkn
j t
◦ F ◦n(x) remains in a compact subset

of Ba(F ) for all t ≤ 0. Since F ◦n : Ba(F )→ Ba(F ) is proper, Ft,j(x) also remains
in a compact subset of Ba(F ), and so, is defined for all t ≤ 0. Since the vector fields
ξj commute, we have that

Ft = Ft,1 ◦ · · · ◦ Ft,p.
So, Ft is defined on Ba(F ) for all t ≤ 0.

Near 0, we have that GF,j = GH,j ◦ Φ and Φ ◦ Ft,j = Ht,j ◦ Φ. In addition,
GH,j ◦ Ht,j = GH,j + t. It follows that near 0, we have that

GF,j ◦ Ft,j = GF,j + t.

The equality ξj = kj · F ∗ξj yields F ◦ Ft,j = Fkjt,j ◦ F . So, for t ≤ 0, the following
equality is valid on Ba(F ):

GF,j ◦ Ft,j =
1
knj
GF,j ◦ F ◦n ◦ Ft,j =

1
knj
GF,j ◦ Fkn

j t,j
◦ F ◦n

=
1
knj
GF,j ◦ F ◦n + t = GF,j + t.

As a consequence, for t ≤ 0, the following equality is valid on Ba(F ):

GF ◦ Ft = GF ◦ Ft,1 ◦ · · · ◦ Ft,p = GF + t.

We now prove that F−1{0} = {0}. As we have seen, each trajectory
(
Ft(x)

)
t≤0

remains in a compact subset of Ba(F ). Since GF ◦ Ft = GF + t, as t → −∞, each
trajectory

(
Ft(x)

)
t≤0

must converge to a point where GF takes the value −∞, i.e.,
to a point in the backward orbit of 0. We may therefore partition Ba(F ) in the
basins of those points (for the flow Ft). The basins are open and since Ba(F ) is
connected, there is only one such basin: the basin of 0. �

The linearizer Φ of ξ extends to the whole set Ba(F ) by

Φ(x) = e−t · Φ ◦ Ft(x)

where t ≤ 0 is chosen sufficiently negative so that Ft(x) ∈ V .
It is injective on Ba(F ). Indeed, assume Φ(x1) = Φ(x2) with x1 and x2 in Ba(F ).

Choose t ≤ 0 sufficiently negative so that Ft(x1) and Ft(x2) belong to V . Then,

Φ ◦ Ft(x1) = etΦ(x1) = etΦ(x2) = Φ ◦ Ft(x2)

Since Φ : V →W is an isomorphism, we have that Ft(x1) = Ft(x2), and so,

x1 = F−t ◦ Ft(x1) = F−t ◦ Ft(x2) = x2.

The equality Φ◦F = H ◦Φ holds on Ba(F ) by analytic continuation. This shows
that Φ(Ba(F )) is contained in the basin of attraction B0(H).

Finally, Φ : Ba(F ) → B0(H) is proper, thus an isomorphism. Indeed, let K ⊂
B0(H) be a compact set and let n ≥ 0 be sufficiently large so that Kn:=H◦n(K) ⊂
W . Since Φ : V → W is an isomorphism, Φ−1(Kn) ⊂ V is compact. Since
F ◦n : Ba(F ) → Ba(F ) is proper, F−n

(
Φ−1(Kn)

)
is compact. This compact set



BÖTTCHER COORDINATES 17

contains Φ−1(K) which is closed since Φ is continuous. It follows that Φ−1(K) is
compact.

This completes the proof that Φ : Ba(F )→ B0(H) is an isomorphism.

3. Applications

In this section we apply our theorems to a family of postcritically finite endo-
morphisms of projective space which arose in [K] and were studied in [BEKP].

Let h : Pm → Pm be an endomorphism; that is, a holomorphic map with no
indeterminacy points. Let Ch be critical locus of h. We define the postcritical locus
of h to be

Ph :=
⋃
n≥1

h◦n(Ch).

The endomorphism h is postcritically finite if Ph is algebraic. Equivalently (via a
Baire category argument), each component of Ch is either periodic, or preperiodic
to a periodic cycle of components in Ph. Postcritically finite endomorphisms of Pm
were first studied by Fornæss and Sibony in [FS], and by Ueda in [Ue2].

3.1. Constructing endomorphisms. The following construction is a particular
case of a more general construction in [K]. Let I be a finite set of cardinality m ≥ 1.
Denote by E the C-vector space of functions x : I → C whose average is 0. For
x ∈ E, we use the notation xi:=x(i) and set

Px(t):=
m+ 1
m

∑
j∈I

∫ t

xj

∏
i∈I

(w − xi) dw.

The polynomial Px is the unique monic centered polynomial of degree m+ 1 whose
critical points are the points (xi)i∈I , repeated according to their multiplicities, and
for which the barycenter of the critical values

(
Px(xi)

)
i∈I is 0.

The function y:=Px ◦ x : I → C belongs to E and satisfies

∀i ∈ I yi = Px(xi).

We denote by H : E → E the map defined by

H(x):=Px ◦ x.

Proposition 2. For m ≥ 2, the map H : E → E is a homogeneous map of degree
m + 1. For m ≥ 3 it induces an endomorphism h : P(E) → P(E), where P(E) is
the projective space associated to E (isomorphic to Pm−2(C)).

Proof. The polynomial Px depends analytically on x ∈ E, therefore H is analytic.
Since

Pλx(λt) =
m+ 1
m

∑
j∈I

∫ λt

λxj

∏
i∈I

(w − λxi) dw

=
w=λv

m+ 1
m

∑
j∈I

∫ t

xj

∏
i∈I

(λv − λxi) d(λv) = λm+1Px(t),

we have H(λx) = λm+1H(x), so H is homogeneous of degree m+ 1.
Assume Px(xi) = 0 for all i ∈ I. This means that Px has only one critical value,

namely 0. Therefore Px has only one critical point. Thus x is constant, and the
average of x is 0, we have x = 0. This implies that H−1(0) = {0}, and consequently,
H : E → E induces an endomorphism h : P(E)→ P(E). �
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The significance of these endomorphisms is that their fixed points correspond
to polynomials with fixed critical points. More precisely, we have the following
correspondence.

Proposition 3. If x is a fixed point of H : E → E, then Px is a monic centered
polynomial of degree m + 1 with fixed critical points. If P is a monic centered
polynomial of degree m + 1 with fixed critical points, then there exists x ∈ E such
that H(x) = x, and Px = P .

Proof. First let x be a fixed point of H. The polynomial Px is monic, centered,
and of degree m + 1. The critical points of Px are the xi. Since x is a fixed point
of H, xi = Px(xi) for all i ∈ I, and thus Px fixes its critical points.

Conversely, let P be a monic centered polynomial of degree m + 1 with fixed
critical points. The polynomial P has exactly m critical points (counted with
multiplicity). Let x be a bijection from I to the set of critical points of P ; there
are m! choices for x. Then x ∈ E, and Px = P . Therefore Px(xi) = P (xi) = xi,
which implies that x is a fixed point of H. �

A set of particular interest is the noninjectivity locus

∆:={x ∈ E : ∃ i 6= j with xi = xj}.

By proposition 3, the fixed points of H correspond to polynomials with fixed critical
points: the fixed points in E − ∆ correspond to polynomials with simple critical
points, whereas the fixed points in ∆ correspond to polynomials with at least one
multiple critical point.

The locus ∆ is a union of hyperplanes which are invariant by H; it is a stratified
space where each stratum is invariant. More precisely, denote by Part(I) the set
of all partitions of I, and set Part∗(I) = Part(I) − {I}. Let I ∈ Part∗(I) be the
singleton partition of I: that is

I:=
{
{i} : i ∈ I

}
.

Given J ∈ Part∗(I), let LJ ⊆ E be the linear space defined by

LJ :={x ∈ E : x is constant on each element of J }.

Note that E = LI and the dimension of LJ is |J | − 1. We say that K ∈ Part∗(I)
is a contraction of J ∈ Part∗(I) if all elements of K are unions of elements of J .
We denote this as K � J , and if K 6= J , we use the notation K ≺ J . When K is a
contraction of J , the linear space LK is contained in LJ , and the codimension of
LK in LJ is |J | − |K|. The stratification of ∆ is given by

∆ =
⋃

J∈Part∗(I)

LJ .

If x ∈ LJ , then H(x) = Px◦x is constant on each element of J . Thus H(LJ ) ⊆ LJ .
In particular, h : P(E)→ P(E) restricts an endomorphism h : P(LJ )→ P(LJ ).

Remark 2. Assume x is a fixed point of H in E−∆; then by proposition 3, Px has
m fixed critical points. The polynomial Px is of degree m+ 1, so there is a unique
(repelling) fixed point of Px which is not critical. Moreover, since Px is centered
and m+ 1 ≥ 3, the fixed points of Px are also centered; this implies that this fixed
point is at 0.
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Consequently, the rational map f : w 7→ 1/Px(1/w) has degree m+1, a repelling
fixed point at∞, and m+1 superattracting fixed points. This map is therefore the
Newton’s method of a polynomial Q of degree m+ 1.

The critical points of f are the zeroes of Q, and the zeroes of Q′′. Since f has
a critical point of multiplicity m at 0, Q′′(w) = awm−1 for some a ∈ C∗ and Q
vanishes at 0. An elementary computation then shows that

Px(z) =
m+ 1
m

z + zm+1.

This polynomial is indeed one with simple critical points which are fixed. So H has
exactly m! fixed points in E −∆.

Figure 2. The polynomial P (z) = 6
5z+z6 has five critical points,

each of which is a superattracting fixed point of P . There is a
repelling fixed point at 0. The polynomial P is conjugate to a
Newton’s method for finding roots of some polynomial Q as dis-
cussed in remark 2.

3.2. The endomorphisms are postcritically finite. Our goal now is to prove
that the endomorphisms h : P(LJ ) → P(LJ ) are postcritically finite: we will
identify the critical locus of H : LJ → LJ , and show that it is invariant. For this
we will use the following observation.

Let J be a nonempty proper subset of I. Let EJ be the set of functions J → C
whose average is 0. There is a natural projection πJ : E → EJ given by

E 3 x 7−→ x|J −Average(x|J) ∈ EJ .

Let HJ : EJ → EJ be the homogeneous map constructed as above with the set J
instead of the set I.

Lemma 12. Assume J ∈ Part∗(I), x ∈ LJ −∆J , and J ∈ J . Then, as v → 0 in
E, we have the following expansion

πJ ◦H(x+ v) = CJ ·HJ ◦ πJ(v) +O
(
‖v‖ · ‖πJ(v)‖|J|+1

)
with CJ ∈ C− {0}.
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Proof. Without loss of generality, assume that mJ :=|J | ≥ 2 since otherwise EJ
has dimension 0, and the result is vacuous. Set y:=x + v, ay:=Average(y|J) and
z:=πJ(v) = πJ(y) = y|J − ay. Let Qz be the polynomial defined by

Qz(t):=
mJ + 1
mJ

∑
j∈J

∫ t

zj

∏
i∈J

(w − zi) dw.

Then

P ′y(t) = (m+ 1)
∏
i∈I

(t− yi) and Q′z(t− ay) = (mJ + 1)
∏
i∈J

(t− yi).

Thus

P ′y(t) = Q′z(t− ay) ·Ry(t) with Ry(t) =
m+ 1
mJ + 1

∏
i∈I−J

(t− yi).

Since x ∈ LJ − ∆J , for all i ∈ I − J we have xi 6= ax, thus Rx(ax) 6= 0. For all
i ∈ J and j ∈ J , as y → x, we have:

• |yj − yi| = |zj − zi| = O
(
‖z‖
)
,

• sup
t∈[yi,yj ]

|Q′z(t− ay)| = O
(
‖z‖mJ

)
, and

• sup
t∈[yi,yj ]

|Ry(t)−Rx(ax)| = O
(
‖v‖
)
.

Thus for all i ∈ J and j ∈ J ,

Py(yj)− Py(yi)−
(
Qz(zj)−Qz(zi)

)
Rx(ax)

=
∫ yj

yi

P ′y(t)−Q′z(t− ay)Rx(ax) dt

=
∫ yj

yi

Q′z(t− ay)
(
Ry(t)−Rx(ax)

)
dt ∈ O

(
‖v‖ · ‖z‖mJ+1

)
.

Setting CJ :=Rx(ax), we deduce that for all j ∈ J ,

Py(yj)−
1

mJ + 1

∑
i∈J

Py(yi) = CJ ·
(
Qz(zj)−

1
mJ + 1

∑
i∈J

Qz(zi)
)

+O
(
‖v‖ · ‖z‖mJ+1

)
= CJ ·Qz(zj) +O

(
‖v‖ · ‖z‖mJ+1

)
.

The result follows since

πJ ◦H = Py ◦ y|J −Average(Py ◦ y|J) and HJ ◦ πJ(y) = HJ(z) = Qz ◦ z. �

Proposition 4. For J ∈ Part∗(I), the critical set of H : LJ → LJ is

∆J :=
⋃

K∈Part∗(I)
K≺J

LK,

H(∆J ) = ∆J , and h : P(LJ )→ P(LJ ) is postcritically finite.

Proof. It is enough to prove that the critical set of H : LJ → LJ is ∆J as the rest
is an immediate consequence. Given J1, J2 ∈ J , set

K:=J1 ∪ J2 and K = K(J1, J2):=J − {J1, J2} ∪ {K}.
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Note that K ≺ J and |K| = |J | − 1, so that LK has codimension 1 in LJ . Choose
a vector v ∈ LJ −LK so that LJ = LK ⊕ Span(v). According to lemma 12, for all
x ∈ LK as t→ 0 we have

πK ◦H(x+ tv) = O(t|K|+1).

It follows that the Jacobian of H : LJ → LJ vanishes with order at least |K| along
LK.

Now
∆J =

⋃
J1,J2∈J

J1 6=J2

LK(J1,J2)

and LK(J1,J2) is a critical component of H : LJ → LJ with multiplicity |J1|+ |J2|.
So ∆J is contained in the critical set of H : LJ → LJ as a hypersurface of total
degree ∑

J1,J2∈J
J1 6=J2

|J1|+ |J2| =
(
|J | − 1

)
·
∑
J∈J
|J | =

(
|J | − 1

)
·m.

Since H : LJ → LJ is a homogeneous map of degree m + 1, its critical locus is a
hypersurface of total degree dim(LJ ) ·m =

(
|J |−1

)
·m. And therefore the critical

set of H : LJ → LJ coincides with ∆J as required. �

We now analyze the spectrum of DxH : TxE → TxE, where x is a fixed point of
H : E → E. It turns out that for the fixed points in E −∆, we have a complete
understanding of this spectrum as outlined in the example below.

Example 2. We now demonstrate by way of example that the eigenvalues of DxH
at a fixed point x ∈ E − ∆ are precisely λk:=(m + 1)/k, k ∈ [1,m − 1], with
corresponding eigenspace Span(xk).1

According to remark 2, there is a unique polynomial

P (z) =
m+ 1
m

z + zm+1

which is monic and centered, with simple fixed critical points, corresponding to
a fixed point of H in E − ∆. Observe that if c is a critical point of P , then
P ′′(c) = −(m+ 1)/c.

Now if Pt(z) = P (z)+ tQ(z)+o(t) with Q(z) ∈ Cm−1[z], and if ct = c+ tv+o(t)
is a critical point of Pt, then

0 = P ′t (ct) = P ′(c) + t(P ′′(c)v +Q′(c)) + o(t)

so that

v = −Q
′(c)

P ′′(c)
=

c

m+ 1
Q′(c),

and
Pt(ct) = P (c) + tQ(c) + tP ′(c)v + o(t) = c+ tQ(c) + o(t).

Therefore v ∈ TxE is an eigenvector associated to the eigenvalue λ if and only if

∀ i ∈ I, Q(xi) = λvi =
λxi
m+ 1

Q′(xi).

This is clearly true if Q(z) = zk, λ = (m+ 1)/k, and vi = xki /λ.

1Recall that x : I → C is a function and xk is the function i 7→ xk
i ∈ C.
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3.3. Fixed points are super-saddles.

Proposition 5. Any fixed point of H : E → E is a super-saddle. More precisely,
if J ∈ Part∗(I) and if x ∈ LJ −∆J is a fixed point of H : E → E, then:

• TxE = Ker(DxH)⊕ Im(DxH)
• Im(DxH) = TxLJ , and
• the spectrum of DxH : TxLJ → TxLJ is contained in C− D and therefore
x is a repelling fixed point of H : LJ → LJ .

Proof. According to proposition 4, x is not a critical point of H : LJ → LJ , thus
the restriction DxH : TxLJ → TxLJ is invertible. As a consequence the image of
DxH contains TxLJ and Ker(DxH) ∩ TxLJ = {0}. The kernel of the projection

π:=
∑
J∈J

πJ : TxE →
⊕
J∈J

T0EJ

is TxLJ . According to lemma 12 πJ ◦DxH = 0 for all J ∈ J . So π ◦DxH = 0, and
the image of DxH is contained in Ker(π) = TxLJ . This implies that Im(DxH) =
TxLJ . In addition the codimension of Ker(DxH) is the dimension of TxLJ and
since Ker(DxH) ∩ TxLJ = {0}, we conclude that TxE = Ker(DxH)⊕ Im(DxH).

Since H : LJ → LJ is homogeneous of degree m + 1, there is an obvious
eigenvalue m + 1 associated to the eigenspace Span(x). Proposition 6 below as-
serts that we can endow TxLJ with an appropriate norm so that the linear map
(DxH)−1 : TxLJ → TxLJ is contracting. As a consequence, the spectrum of
(DxH)−1 : TxLJ → TxLJ is contained in D and thus, the spectrum of the linear
map DxH : TxLJ → TxLJ is contained in C− D. �

By definition E is a subspace of CI of codimension 1. It is the kernel of the
linear form

eI : E 3 v 7→ 1
|I|
∑
i∈I

vi ∈ C.

As a consequence E∗ may be identified with the quotient (CI)∗/Span(eI). Let
1 : I → C be the function which is constant and equal to 1. Since CI = E⊕Span(1),
the dual space E∗ may also be identified with the orthogonal space(

Span(1)
)⊥ =

{
α ∈ (CI)∗ : α(1) = 0

}
.

More generally, given J ⊆ I let eJ ∈ (CI)∗ be the linear form defined by

eJ(v) =
1
|J |
∑
j∈J

vj .

Note that for J ∈ Part∗(I),

E = LJ ⊕
⋂
J∈J

Ker(eJ)

and therefore L∗J may be identified with

(
Span(1)

)⊥ ∩ Span(eJ ; J ∈ J ) =

{∑
J∈J

λJe
J : λJ ∈ C and

∑
J∈J

λJ = 0

}
.
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If α =
∑
J∈J

λJe
J ∈ L∗J then the pairing with v ∈ LJ is given by

α(v) =
∑
J∈J

λJvJ with v(J) = {vJ}.

Given x ∈ LJ − ∆J we will now identify (TxLJ )∗ with a space of quadratic
differentials, equip this space with an appropriate norm then identify the transpose
of (DxH)−1 : TxLJ → TxLJ , and finally show that this transpose is strictly
contracting. So for J ∈ J , let qJ be the quadratic differential defined on C by

qJ =
dz2

z − xJ
.

Set

Qx:=

{∑
J∈J

λJqJ :
∑
J∈J

λJ = 0

}
.

A quadratic differential q =
∑
λJqJ ∈ Qx may be paired with a tangent vector

v ∈ TxLJ as follows

〈q, v〉 :=
∑
J∈J

λJvJ =
∑
J∈J

ResxJ
(q · ξv)

where ξv is any holomorphic vector field near x(I) which takes the value vJ at xJ .
According to the previous discussion, this pairing gives an identification of (TxLJ )∗

with Qx.
Choose R large enough so that P−1

x (DR) is compactly contained in DR, where
DR is the disk centered at 0 of radius R. We equip Qx with the L1 norm

‖q‖:=
∫
DR

|q|.

Proposition 6. Assume x ∈ LJ − ∆J . The transpose of the linear mapping
(DxH)−1 : TxLJ → TxLJ is identified with the push-forward operator

(Px)∗ : Qx 3 q 7→
∑

g∗q ∈ Qx
where g ranges over the inverse branches of Px. In addition,

∀ q ∈ Qx
∥∥(Px)∗q

∥∥ < ‖q‖.
Proof. The space Qx is the set of meromorphic quadratic differentials on P1(C)
which are holomorphic outside x(I), have at most simple poles along x(I) and at
most a double pole at ∞. Set P :=Px. If q ∈ Qx then P∗q is a meromorphic
quadratic differential on P1(C). Since q has at most a double pole at ∞, P∗q also
has at most a double pole at ∞. The other poles of P∗q are simple and contained
in P

(
x(I)

)
union the critical value set of P , that is x(I). This shows that P∗ maps

Qx to Qx. In addition

‖P∗q‖ =
∫
DR

∣∣∣∑ g∗q
∣∣∣ ≤ ∫

DR

∑
|g∗q| =

∫
P−1(DR)

|q| <
∫
DR

|q| = ‖q‖.

Therefore we only need to prove that for all v ∈ TxLJ and all q ∈ Qx
〈q, v〉 =

〈
P∗q,DxH(v)

〉
.

Fix v ∈ TxLJ and q ∈ Qx. Let U be the complement in DR of pairwise disjoint
closed disks centered at the points of x(I), and contained in DR. If ξ is a C∞
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vector field on C which is holomorphic outside U , vanishes outside DR, and satisfies
ξ ◦ x = v, then

〈q, v〉 =
∑
J∈J

ResxJ
(q · ξ) = − 1

2πi

∫
∂U

q · ξ =
Stokes

1
2πi

∫
U

q · ∂ξ =
1

2πi

∫
C
q · ∂ξ.

With an abuse of notation set

xt:=x+ tv, Pt:=Pxt
, and yt:=H(xt) = Pt ◦ xt.

Then,

ẋ:=
∂xt
∂t

∣∣∣
t=0

= v and ẏ:=
∂yt
∂t

∣∣∣
t=0

= DxH(v).

In addition, the critical point set of Pt is xt(I) and the critical value set of Pt is
yt(I). Let (ϕt : C→ C)t∈(−ε,ε) be an analytic family of C∞ diffeomorphisms such
that

• ϕ0 = id,
• ϕt is the identity outside DR,
• ϕt is holomorphic outside U and
• yt = ϕt ◦ y.

Note that

ϕ̇:=
∂ϕt
∂t

∣∣∣
t=0

is a C∞ vector field on C which is holomorphic outside U , vanishes outside DR,
and satisfies ϕ̇ ◦ x = DxH(v). Since ϕt follows the critical value set of Pt we can
lift the diffeomorphisms ϕt : C→ C to diffeomorphisms ψt : C→ C so that ψ0 = id
and the following diagram commutes

(C, x(I))
ψt //

P

��

(C, xt(I))

Pt

��
(C, y(I))

ϕt // (C, yt(I))

Then,

ψ̇:=
∂ψt
∂t

∣∣∣
t=0

is a C∞ vector field on C which is holomorphic outside U , vanishes outside DR,
and satisfies ψ̇ ◦ x = v. In addition, the infinitesimal Beltrami differentials ∂̄ϕ̇ and
∂̄ψ̇ satisfy the relation

∂̄ψ̇ = P ∗(∂̄ϕ̇).

Therefore

〈q, v〉 =
∫

C
q · ∂̄ψ̇ =

∫
C
q · P ∗(∂̄ϕ̇) =

∫
C
P∗q · ∂̄ϕ̇ =

〈
P∗q,DxH(v)

〉
as required. �
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Figure 3. On the left is a real slice of the immediate basin BaJ (h)
in the case |I| = 4 and J = {J1, J2} with |J1| = 3 and |J2| = 1.
The critical set P(∆) contains three lines passing through aJ . Al-
most every orbit in BaJ (h) converges to aJ tangentially along one
of these lines; the immediate basin is colored accordingly. Since
|J2| = 1, EJ2 = {0} and HJ1 ⊕HJ2 = HJ1 . According to proposi-
tion 7 below, there is a Böttcher coordinate Φ : BaJ (h)→ B0(HJ1).
On the right is a real slice of the immediate basin B0(HJ1). The
isomorphism Φ respects the coloring.

3.4. Superattracting fixed points of h : P(E) → P(E). If J ∈ Part∗(I) has
cardinality 2, then LJ has dimension 1 and its image in P(E) is a point aJ . This
is a superattracting fixed point for h : P(E)→ P(E).

We will now show that we can apply theorems 1 and 2. Note that HJ1 ⊕HJ2 :
EJ1 ⊕ EJ2 → EJ1 ⊕ EJ2 is a quasihomogeneous map of bidegree (|J1|, |J2|).

Proposition 7. Let J :={J1, J2} ∈ Part∗(I) and aJ be the image of LJ in P(E).
Then there is an analytic isomorphism

Φ : BaJ (h) −→ B0(HJ1 ⊕HJ2)

conjugating h to HJ1 ⊕HJ2 .

Proof. The analytic map h : P(E) → P(E) is proper, and has a superattracting
fixed point at aJ . We will prove that there is a local isomorphism

Φ :
(
P(E), aJ

)
→
(
EJ1 ⊕ EJ2 , 0

)
conjugating h to HJ1⊕HJ2 . Such a Φ automatically maps the germ of the postcrit-
ical set of h at aJ , i.e. the germ of P(∆) at aJ , to the germ of the postcritical set
of HJ1⊕HJ2 at 0. So near aJ , Φ maps the postcritical set of h : BaJ (h)→ BaJ (h),
that is BaJ (h)∩P(∆), to the postcritical set of HJ1 ⊕HJ2 . The result then follows
from theorem 2.

To prove that there is a local conjugacy, we use theorem 1. Choose x ∈ LJ
and let L>J ⊂ E be a subspace of codimension 1 such that E = LJ ⊕ L>J . Let
σ : (P(E), aJ ) → (E, x) be the local section with image in x + L>J . Then the
composition π◦σ : (P(E), aJ )→ (EJ1⊕EJ2 , 0) is a local isomorphism. It conjugates



26 X. BUFF, A.L. EPSTEIN, AND S. KOCH

h : (P(E), aJ )→ (P(E), aJ ) to an analytic germ F : (EJ1⊕EJ2 , 0)→ (EJ1⊕EJ2 , 0).
It follows from lemma 12 that F has an adapted superattracting fixed point with
quasihomogeneous part c1HJ1 ⊕ c2HJ2 for some constants c1 and c2 in C∗.

In addition v:=v1+v2 with v1 ∈ EJ1 and v2 ∈ EJ2 is contained in the postcritical
set of F near 0 if and only if there is a w ∈ L>J with π(w) = v and x+w ∈ ∆. Since
x(J1) 6= x(J2), if v is sufficiently close to 0, the sets (x + w)(J1) and (x + w)(J2)
are disjoint. In that case, x+w ∈ ∆ if and only if v1 : J1 → C or v2 : J2 → C is not
injective. As a consequence λ1v1 +λ2v2 is contained in the postcritical set of F for
all (λ1, λ2) ∈ C2 and the vector fields ϑJ1 and ϑJ2 are tangent to the postcritical
set of F near 0.

According to theorem 1, there is a local isomorphism conjugating F near 0 to
HJ1 ⊕HJ2 near 0. The existence of a Böttcher coordinate

Φ : (P(E), aJ )→ (EJ1 ⊕ EJ2 , 0)

conjugating the map F : (P(E), aJ ) → (P(E), aJ ) to the quasihomogeneos map
HJ1 ⊕HJ2 : (EJ1 ⊕ EJ2 , 0)→ (EJ1 ⊕ EJ2 , 0) follows immediately. �

4. Questions for further study

Theorem 2 asserts that when aJ ∈ P(E) is a superattracting fixed point of
h : P(E) → P(E) then there is a Böttcher coordinate Φ : Ba(h) → B0(HJ ) with
HJ :=HJ1⊕HJ2 : EJ1⊕EJ2 → EJ1⊕EJ2 . The boundary of B0(HJ ) is a topological
sphere of real dimension 2m − 5. Does the inverse Φ−1 : B0(HJ ) → Ba(h) extend
continuously to the boundary of B0(HJ )? Is the boundary of Ba(h) topologically
the quotient of a sphere by an equivalence relation? How could such an equivalence
relation be described?

In dimension one, a global Böttcher coordinate gives rise to a dynamical foliation
of the immediate basin by rays. What is the higher dimensional analog of these
rays?

In dimension one, if two germs with a superattracting fixed point are topologi-
cally conjugate, then this this topological conjugacy can be promoted to an analytic
conjugacy via a pullback argument. Can one give a topological and/or analytic clas-
sification of germs having a superattracting fixed point in higher dimensions? Do
these classifications coincide?

In section 3, we applied theorems 1 and 2 to a superattracting fixed point aJ ,
which was the image of LJ in P(E), where |J | = 2. What happens for |J | > 2?
In this case, dim(LJ ) = |J | − 1, and the image in P(E) will be a projective space
of dimension |J | − 2. Is this projective space an attractor (in the sense of [M])?

If |J | > 2 and if a ∈ P(LJ ) is a fixed point, then according to proposition 5 the
spectum of Dah : TaP(LJ )→ TaP(LJ ) belongs to C−D, and P(LJ ) is the unstable
manifold of a. The unique additional eigenvalue of Dah : TaP(E) → TaP(E) is 0.
What is the structure of the associated superstable manifold

W s(a):=
{
b ∈ P(E) : h◦n(b) −→

n→∞
a
}

?

Is it a smooth analytic submanifold of P(E)? Is it dynamically parameterized by
the attracting basin of the quasihomogeneous map⊕

J∈J
HJ :

⊕
J∈J

EJ →
⊕
J∈J

EJ?
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The maps to which we applied our theorems in section 3 were postcritically finite.
Are there examples (apart from the quasihomogeneous maps themselves) which
are algebraic, and not postcritically finite but admit a Böttcher coordinate? The
converse is false: consider the map F : C2 → C2 given by F : (x, y) 7→ (x2−y3, y2).
One can verify that F is postcritically finite. The derivative D0F is nilpotent so
that F ◦2 has a superattracting fixed point at 0. In addition

F ◦2(x, y) = (y2 + o(y2), y4 + o(y4)).

The map F ◦2 cannot be locally conjugate to the map (x, y) 7→ (y2, y4) as this map
is not open.
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(814): 1992 169–186.

[Ue2] T. Ueda Critically finite maps on projective spaces, Sūrikaisekikenkyūsho Kōkyūroku
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[Us] S. Ushiki Böttcher’s theorem and super-stable manifolds for multidimensional complex
dynamical systems, preprint.

E-mail address: xavier.buff@math.univ-toulouse.fr
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