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Bifurcation measure and
postcritically finite rational

maps
Xavier Buff and Adam L. Epstein

Bassanelli and Berteloot [BB] have defined a bifurcation measure µbif on the
moduli space Md of rational maps of degree d ≥ 2. They have proved that it is
a positive measure of finite mass and that its support is contained in the closure
of the set Zd of conjugacy classes of rational maps of degree d having 2d − 2
indifferent cycles.

Denote by Xd the set of conjugacy classes of strictly postcritically finite ra-
tional maps of degree d which are not flexible Lattès maps. We prove that
Supp(µbif) = Xd = Zd. Our proof is based on a transversality result due to the
second author.

A similar result was obtained with different techniques by Dujardin and Favre

[DF] for the bifurcation measure on moduli spaces of polynomials of degree d ≥ 2.

Introduction

A result of Lyubich [L] asserts that for each rational map f : P1 → P1

of degree d ≥ 2, there is a unique probability measure µf of maximal
entropy log d. It is ergodic, satisfies f∗µf = d · µf and is carried outside
the exceptional set of f . This measure is the equilibrium measure of f .

The Lyapunov exponent of f with respect to the measure µf may be
defined by

L(f):=
∫

P1
log

∥∥Df
∥∥ dµf ,

where ‖ · ‖ is any smooth metric on P1. Since µf is ergodic, the quantity
eL(f) records the average rate of expansion of f along a typical orbit with
respect to µf .

The space Ratd of rational maps of degree d is a smooth complex man-
ifold of dimension 2d + 1. The function L : Ratd → R is continuous [Ma]
and plurisubharmonic [DeM2] on Ratd. The positive (1, 1)-current

Tbif :=ddcL

is called the bifurcation current in Ratd.
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2 1. Bifurcation measure and Misiurewicz maps

The bifurcation locus in Ratd is the closure of the set of discontinuity
of the map Ratd 3 f 7→ Jf , where Jf stands for the Julia set of f and
the continuity is for the Hausdorff topology for compact subsets of P1.
DeMarco [DeM2] proved that the support of the bifurcation current Tbif is
equal to the bifurcation locus.

For f ∈ Ratd, denote by O(f) the set of rational maps which are conju-
gate to f by a Möbius transformation. This set is a 3 dimensional complex
analytic submanifold of Ratd. In fact, O(f) is biholomorphic to Aut(P1)/Γ,
where Aut(P1) ' PSL(2,C) is the group of Möbius transformations, and
where Γ ⊂ Aut(P1) is the finite subgroup of Möbius transformations which
commute with f .

The moduli space Md is the quotient Ratd/Aut(P1), where Aut(P1)
acts on Ratd by conjugation. It is an orbifold of complex dimension 2d−2.
It is a normal, quasiprojective variety. We denote by p : Ratd →Md the
canonical projection.

The Lyapunov exponent is invariant under holomorphic conjugacy, hence
is constant on the orbits O(f). The map L : Ratd → R descends to a map
L̂ : Md → R which is continuous, bounded from below and plurisubhar-
monic on Md (see [BB] proposition 6.2). The measure

µbif :=(ddcL̂)∧(2d−2)

is called the bifurcation measure on Md. By construction, we have

p∗µbif = Tbif
∧(2d−2).

We denote by C(f) the set of critical points of f and by V(f):=f
(C(f)

)
the set of critical values of f . The postcritical set is

P(f):=
⋃

c∈C(f)

⋃

n≥1

f◦n(c).

A rational map f is postcritically finite if P(f) is finite. It is strictly post-
critically finite if P(f) is finite and if f does not have any superattracting
cycle. The map f is a Lattès map if it is obtained as the quotient of an
affine map A : z 7→ az + b on a complex torus C/Λ: there is a finite-
to-one holomorphic map Θ : C/Λ → P1 such that the following diagram
commutes:

C/Λ A //

Θ

²²

C/Λ

Θ

²²
P1

f
// P1.
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3

A Lattès map is strictly postcritically finite (see [Mi]). It is a flexible Lattès
map if we can choose Θ with degree 2 and A(z) = az + b with a > 1 an
integer.

Let us introduce the following notation:

• Xd ⊂ Md for the set of conjugacy classes of strictly postcritically
finite rational maps of degree d which are not flexible Lattès maps;

• X ∗d ⊂ Xd for the subset of conjugacy classes of maps which have only
simple critical points and satisfy C(f) ∩ P(f) = ∅;

• Zd ⊂Md for the set of conjugacy classes of maps which have 2d− 2
indifferent cycles (we do not count multiplicities).

Bassanelli and Berteloot [BB] proved that

• the bifurcation measure does not vanish identically on Md and has
finite mass,

• the conjugacy class of any non-flexible Lattès map lies in the support
of µbif ,

• the support of µbif is contained in the closure of Zd.

Our main result is the following.

Main Theorem The support of the bifurcation measure in Md is:

Supp(µbif) = X ∗d = Xd = Zd.

Remark We shall prove in Section 1 that

X ∗d = Xd = Zd. (0.1)

Then, due to the results in [BB], we will only have to prove the inclusion
X ∗d ⊆ Supp(µbif).

Remark We do not know how to prove that the conjugacy classes of flexible
Lattès maps lie in the support of µbif . It would be enough to prove that
every flexible Lattès map can be approximated by strictly postcritically
finite rational maps which are not Lattès maps.

Remark The underlying idea of the proof is a potential-theoretic interpre-
tation of a result of Tan Lei [T] concerning the similarities between the
Mandelbrot set and Julia sets.
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4 1. Bifurcation measure and Misiurewicz maps

Our proof relies on a transversality result that we will now present.
Elements of (P1)2d−2 are denoted z = (z1, . . . , z2d−2).

Let f ∈ Ratd be a postcritically finite rational map with 2d − 2 dis-
tinct critical points c1, . . . , c2d−2, satisfying C(f) ∩ P(f) = ∅. There are
integers `j ≥ 1 such that αj :=f◦`j (cj) are periodic points of f . Set
c:=(c1, . . . , c2d−2) and α:=(α1, . . . , α2d−2). The critical points are simple
and the periodic points are repelling. By the Implicit Function Theorem,
there are

• an analytic germ c : (Ratd, f) → (
(P1)2d−2, c

)
such that for g near f ,

cj(g) is a critical point of g and

• an analytic germ a : (Ratd, f) → (
(P1)2d−2, α

)
such that for g near

f , aj(g) is a periodic point of g.

Let v : (Ratd, f) → (
(P1)2d−2, α

)
be defined by

v:=(v1, . . . , v2d−2) with vj(g):=g◦`j
(
cj(g)

)
.

Denote by Dfv and Dfa the differentials of v and a at f . The transversality
result we are interested in is the following.

Theorem 1 If f is not a flexible Lattès map, then the linear map

Dfv−Dfa : TfRatd →
2d−2⊕

j=1

TαjP1

is surjective. The kernel of Dfv−Dfa is the tangent space to O(f) at f .

There are several proofs of this result. Here, we include a proof due to
the second author. A different proof was obtained by van Strien [vS]. His
proof covers a more general setting where the critical orbits are allowed
to be preperiodic to a hyperbolic set. Our proof covers the case of maps
commuting with a nontrivial group of Möbius transformations (a slight
modification of van Strien’s proof probably also covers this case).

Remark A similar transversality theorem holds in the space of polynomials
of degree d and the arguments developed in this article lead to an alterna-
tive proof of the result of Dujardin and Favre.
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1. The sets X ∗d , Xd and Zd 5

1 The sets X ∗
d , Xd and Zd

In this section, we prove (0.1). Since X ∗d ⊆ Xd, it is enough to prove that

Xd ⊆ Zd and Zd ⊆ X ∗d .

1.1 Tools

Our proof relies on the following three results.
The first result is an immediate consequence of the Fatou-Shishikura

inequality on the number of nonrepelling cycles of a rational map (see [S]
and/or [E]). For f ∈ Ratd, denote by

• Natt(f) the number of attracting cycles of f ,

• Nind(f) the number of distinct indifferent cycles of f and

• Ncrit(f) the number of critical points of f , counting multiplicities,
whose orbits are strictly preperiodic to repelling cycles.

Theorem 2 For any rational map f ∈ Ratd, we have:

Ncrit(f) + Nind(f) + Natt(f) ≤ 2d− 2.

The second result is a characterization of stability due to Mañe, Sad and
Sullivan [MSS] (compare with [McM2] section 4.1). Let Λ be a complex
manifold. A family of rational maps Λ 3 λ 7→ fλ is an analytic family if
the map Λ × P1 3 (λ, z) 7→ fλ(z) ∈ P1 is analytic. The family is stable at
λ0 ∈ Λ if the number of attracting cycles of fλ is locally constant at λ0.

Theorem 3 Let Λ 3 λ 7→ fλ be an analytic family of rational maps parametrized
by a complex manifold Λ. The following assertions are equivalent.

• The family is stable at λ0.

• For all m ∈ S1 and p ≥ 1, the number of cycles of fλ having multiplier
m and period p is locally constant at λ0.

• For all ` ≥ 1 and p ≥ 1, the number of critical points c of fλ such
that f◦`(c) is a repelling periodic point of period p is locally constant
at λ0.

• The maximum period of an indifferent cycle of fλ is locally bounded
at λ0.

• The maximum period of a repelling cycle of fλ contained in the post-
critical set P(fλ) is locally bounded at λ0.
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6 1. Bifurcation measure and Misiurewicz maps

The third result is due to McMullen [McM1]. Let Λ be an irreducible
quasiprojective complex variety. A family of rational maps Λ 3 λ 7→ fλ is
an algebraic family if the map Λ × P1 3 (λ, z) 7→ fλ(z) ∈ P1 is a rational
mapping. The family is trivial if all its members are conjugate by Möbius
transformations. The family is stable if it is stable at every λ ∈ Λ.

Theorem 4 A stable algebraic family of rational maps is either trivial or it
is a family of flexible Lattès maps.

1.2 Spaces of rational maps with marked critical points and marked
periodic points

Here and henceforth, it will be convenient to consider the set Ratcrit,pern

d of
rational maps of degree d with marked critical points and marked periodic
points of period dividing n. This set may be defined as follows.

First, the unordered sets of m points in P1 may be identified with Pm.
This yields a rational map σm : (P1)m → Pm which may be defined as
follows:

σm

(
[x1 : y1], . . . , [xm : ym]

)
= [a0 : · · · : am]

with
m∑

j=0

ajx
jym−j =

m∏

i=1

(xyi − yxi).

Second, to a rational map f ∈ Ratd, we associate the unordered set
{c1, . . . , c2d−2} of its 2d−2 critical points, listed with repetitions according
to their multiplicities. This induces a rational map crit : Ratd → P2d−2

which may be defined as follows: if f
(
[x : y]

)
=

[
P (x, y) : Q(x, y)

]
with P

and Q homogeneous polynomials of degree d, then

crit(f) = [a0 : · · · : a2d−2] with
2d−2∑

j=0

ajx
jy2d−2−j =

∂P

∂x

∂Q

∂y
− ∂P

∂y

∂Q

∂x
.

Third, given an integer n ≥ 1, to a rational map f ∈ Ratd, we associate
the unordered set {α1, . . . , αdn+1} of the fixed points of f◦n, listed with
repetitions according to their multiplicities. This induces a rational map
pern : Ratd → Pdn+1 which may be defined as follows:
if f◦n

(
[x : y]

)
=

[
Pn(x, y) : Qn(x, y)

]
with Pn and Qn homogeneous poly-

nomials of degree dn, then

pern(f) = [a0 : · · · : adn+1]

with
dn+1∑

j=0

ajx
jydn+1−j = yPn(x, y)− xQn(x, y).
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1. The sets X ∗d , Xd and Zd 7

The space of rational maps of degree d with marked critical points and
marked periodic points of period dividing n is the set:

Ratcrit,pern

d :=
{

(f, c, α) ∈ Ratd × (P1)2d−2 × (P1)dn+1 such that
crit(f) = σ2d−2(c) and pern(f) = σdn+1(α)

}
.

Then, Ratcrit,pern

d is an algebraic subset1 of Ratd× (P1)2d−2× (P1)dn+1.
Since there are 2d− 2 + dn + 1 equations, the dimension of any irreducible
component of Ratcrit,pern

d is at least that of Ratd, i.e. 2d + 1. Since the
fibers of the projection Ratcrit,pern

d → Ratd are finite (a rational map has
finitely many critical points and finitely many periodic points of period
dividing n), the dimension of any component is exactly 2d + 1.

1.3 The inclusion Xd ⊆ Zd

Let f0 ∈ Ratd be a strictly postcritically finite rational map but not a
flexible Lattès map. We must show that any neighborhood of f0 in Ratd

contains a rational map with 2d−2 indifferent cycles. This is an immediate
consequence (by induction) of the following lemma.

Lemma 1 Let r ≥ 1 and s ≥ 0 be integers such that r + s = 2d−2. Assume
f0 ∈ Ratd is not a flexible Lattès map, Ncrit(f0) = r and Nind(f0) = s.
Then, arbitrarily close to f0, we may find a rational map f1 such that
Ncrit(f1) = r − 1 and Nind(f1) = s + 1.

Proof: Let p1, . . . , ps be the periods of the indifferent cycles of f0. Denote
by p their least common multiple. A point λ ∈ Rat

crit,perp

d is of the form
(
gλ, c1(λ), . . . , c2d−2(λ), α1(λ), . . . αdp+1(λ)

)
.

We choose λ0 ∈ Rat
crit,perp

d so that

• gλ0 = f0,

• c1(λ0), . . . cr(λ0) are preperiodic to repelling cycles of f0 and

• α1(λ0),. . . , αs(λ0) are indifferent periodic points of f0 belonging to
distinct cycles.

For i ∈ [1, r], let ki ≥ 1 be the least integer such that

g◦ki

λ0

(
ci(λ0)

)
= g

◦(ki+pi)
λ0

(
ci(λ0)

)
.

1By algebraic we mean a quasiprojective variety in some projective space. It is
classical that any product of projective spaces embeds in some PN . Thus, it makes
sense to speak of algebraic subsets of products of projective spaces
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8 1. Bifurcation measure and Misiurewicz maps

For j ∈ [1, s], let mj be the multiplier of g◦pλ0
at αj(λ0). In particular,

mj ∈ S1.
Consider the algebraic subset

{
λ ∈ Rat

crit,perp

d ; ∀i ∈ [1, r − 1], g◦ki

λ

(
ci(λ)

)
= g

◦(ki+pi)
λ

(
ci(λ)

)
and

∀j ∈ [1, s], the multiplier of g◦pλ at αj(λ) is mj

}

and let Λ be an irreducible component containing λ0. Note that there are
r − 1 + s = 2d− 3 equations. It follows that the dimension of Λ is at least
(2d + 1) − (2d − 3) = 4. In particular, the image of Λ by the projection
Rat

crit,perp

d → Ratd cannot be contained in O(f0).
Embedding Λ in some PN (with N sufficiently large) and slicing with an

appropriate projective subspace, we deduce that there is an algebraic curve
Γ ⊆ Λ containing λ0, whose image by the projection Rat

crit,perp

d → Ratd is
not contained in O(f0). Desingularizing the algebraic curve, we obtain a
smooth quasiprojective curve Σ (i.e. a Riemann surface of finite type) and
an algebraic map Σ → Γ which is surjective and generically one-to-one.
We let σ0 ∈ Σ be a point which is mapped to λ0 ∈ Γ. With an abuse
of notation, we write gσ, ci(σ) and αj(σ) in place of gλ(σ), ci

(
λ(σ)

)
and

αj

(
λ(σ)

)
. Then, we have an algebraic family of rational maps Σ 3 σ 7→ gσ

parametrized by a smooth quasiprojective curve Σ, coming with marked
critical points ci(σ) and marked periodic points αj(σ).

The family is not trivial and gσ0 is not a flexible Lattès map. Assume
that the family were stable at σ0. Then, according to Theorem 3, the
number of critical points which are preperiodic to repelling cycles would
be locally constant at σ0. Thus, the critical orbit relation

g◦kr
σ (cr

(
σ)

)
= g◦(kr+pr)

σ (cr

(
σ)

)

would hold in a neighborhood of σ0 in Σ, thus for all σ ∈ Σ by an-
alytic continuation. As a consequence, for all σ ∈ Σ, we would have
Ncrit(gσ) + Nind(gσ) = 2d− 2. According to Theorem 2, this would imply
that Natt(gσ) = 0 for all σ ∈ Σ. The family would be stable which would
contradict Theorem 4.

Thus, the family Σ 3 σ 7→ gσ is not stable at σ0. According to Theorem
3, the maximum period of an indifferent cycle of gσ is not locally bounded
at σ0. Thus, we may find a parameter σ1 ∈ Σ arbitrarily close to σ0 such
that gσ1 has at least s + 1 indifferent cycles. ¤

1.4 The inclusion Zd ⊆ X ∗
d

The proof follows essentially the same lines as the previous one. We begin
with a map f0 ∈ Ratd having 2d− 2 indifferent cycles. We must show that
arbitrarily close to f0, we may find a postcritically finite map f1 ∈ Ratd
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1. The sets X ∗d , Xd and Zd 9

which has only simple critical points, satisfies C(f1)∩P(f1) = ∅ and is not
a flexible Lattès map.

The following lemma implies (by induction) that arbitrarily close to
f0, we may find a rational map f1 ∈ Ratd whose postcritical set contains
2d−2 distinct repelling cycles. Automatically, the 2d−2 critical points of f1

have to be simple, strictly preperiodic, with disjoint orbits. In particular,
C(f1) ∩ P(f1) = ∅. In addition, Lattès maps lie in a Zariski closed subset
of Ratd. Since f0 has indifferent cycles, it cannot be a Lattès map. So, if
f1 is sufficiently close to f0, then f1 is not a Lattès map.

Lemma 2 Let r ≥ 0 and s ≥ 1 be integers such that r + s = 2d − 2. Let
f0 ∈ Ratd satisfy Ncrit(f0) = r, Nind(f0) = s, the postcritical set of f0

containing r distinct repelling cycles. Then, arbitrarily close to f0, there is
a rational map f1 which satisfies Ncrit(f1) = r + 1 and Nind(f1) = s − 1,
the postcritical set of f1 containing r + 1 distinct repelling cycles.

Proof: The proof is similar to the proof of Lemma 1; we do not give all the
details. First, note that since s ≥ 1, f0 has an indifferent cycle, and thus,
is not a Lattès map. Second, we may find a nontrivial algebraic family of
rational maps Σ 3 σ 7→ gσ parametrized by a smooth quasiprojective curve
Σ with marked critical points c1(σ), . . . , c2d−2(σ) and marked periodic
points α1(σ), . . . , αdp+1(σ) such that

• gσ0 = f0,

• for j ∈ [1, s], the periodic points αj(σ0) belong to distinct indifferent
cycles of f0,

• for all σ ∈ Σ and all i ∈ [1, r], the critical point ci(σ) is preperiodic
to a periodic cycle of gσ and

• for all σ ∈ Σ and all j ∈ [1, s − 1], the periodic points αj(σ) are
indifferent periodic points of gσ.

If the family were stable at σ0, the indifferent periodic point αs(σ0) would
be persistently indifferent in a neighborhood of σ0 in Σ, thus in all Σ by
analytic continuation. The relation Ncrit(gσ) + Nind(gσ) = 2d − 2 would
hold throughout Σ. Thus, for all σ ∈ Σ, we would have Natt(gσ) = 0 and
the family would be stable. This is not possible since gσ0 is not a Lattès
map and since the family Σ 3 σ 7→ gσ is not trivial.

It follows that the period of a repelling cycle contained in the postcritical
set of gσ is not locally bounded at σ0. In addition, for i ∈ [1, r], the critical
points ci(σ0) of gσ0 are preperiodic to distinct repelling cycles. Thus, we
may find a rational map gσ1 , with σ1 arbitrarily close to σ0, such that gσ1

has r + 1 critical points preperiodic to distinct repelling cycles. ¤
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10 1. Bifurcation measure and Misiurewicz maps

2 Transversality

Here and henceforth, we will consider various holomorphic families t 7→ γt

defined near 0 in C. We will employ the notation

γ:=γ0 and γ̇:=
dγt

dt

∣∣∣
t=0

.

2.1 The tangent space to O(f)

Here we characterize the vectors ξ ∈ TfRatd which are tangent to O(f) for
some rational map f ∈ Ratd.

Note that if t 7→ ft is a holomorphic family of rational maps, then for
every z ∈ P1, the vector ḟ(z) belongs to the tangent space Tf(z)P1. Thus,
if ξ ∈ TfRatd, then for every z ∈ P1, we have ξ(z) ∈ Tf(z)P1. If ξ ∈ TfRatd

there is a unique vector field ηξ, meromorphic on P1 with poles in C(f),
such that

Df ◦ ηξ = −ξ.

Indeed, if z is not a critical point of f , then Dzf : TzP1 → Tf(z)P1 is an
isomorphism, whence we may define ηξ(z) by

ηξ(z) := −(
Dzf

)−1(
ξ(z)

)
.

Moreover, in this situation, it follows from the Implicit Function Theorem
that there is a unique holomorphic germ t 7→ zt with z0 = z such that
ft(zt) = f(z), and furthermore ηḟ (z) = ż ∈ TzP1.

Remark If f has simple critical points, then the vector field ηξ has simple
poles or removable singularities along C(f). There is a removable singu-
larity at c ∈ C(f) if and only if ξ(c) = 0. This can be seen by working in
coordinates, using the fact that f ′ has simple zeroes at points of C(f).

Recalling that Aut(P1) is a Lie group, we denote by aut(P1) the corre-
sponding Lie algebra: that is, the tangent space to Aut(P1) at the identity
map. Thus, aut(P1) is canonically isomorphic to the space of globally holo-
morphic vector fields.

If X ⊆ P1 − C(f) and if θ is a vector field defined on f(X), then the
vector field f∗θ is defined on X by

f∗θ(z):=(Dzf)−1
(
θ ◦ f(z)

)
.

If θ ∈ aut(P1), the vector field f∗θ is the unique meromorphic vector field
on P1 such that Df ◦ f∗θ = θ ◦ f .
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2. Transversality 11

Proposition 1 A vector ξ ∈ TfRatd is tangent to O(f) if and only if

ηξ = θ − f∗θ

for some θ ∈ aut(P1).

Proof: The derivative at the identity of

Aut(P1) 3 φ 7→ φ ◦ f ◦ φ−1 ∈ Ratd

is the linear map

aut(P1) 3 θ 7→ θ ◦ f −Df ◦ θ ∈ TfRatd.

Thus, ξ ∈ TfRatd is tangent to O(f) if and only if ξ = θ ◦ f − Df ◦ θ
for some θ ∈ aut(P1). Since θ ◦ f − Df ◦ θ = Df ◦ (f∗θ − θ), it follows
that ξ ∈ TfRatd is tangent to O(f) if and only if ηξ = θ − f∗θ for some
θ ∈ aut(P1). ¤

2.2 Guided vector fields

Let θ be a vector field, defined and holomorphic on a neighborhood of the
critical value set of some rational map f ∈ Ratd. Given ξ ∈ TfRatd, we
want to understand under which conditions the vector field f∗θ + ηξ is
holomorphic on a neighborhood of the critical point set of f .

Lemma 3 Let c be a simple critical point of f ∈ Ratd and let θ be a vector
field, holomorphic near v = f(c). For any ξ ∈ TfRatd, the vector field
f∗θ + ηξ is holomorphic near c if and only if θ(v) = ξ(c).

Proof: Since c is a simple critical points of f , it follows from the Implicit
Function Theorem that there is a unique holomorphic germ t 7→ ct with
c0 = c such that ct is a critical point of ft. Let vt:=ft(ct) be the corre-
sponding critical values. Note that v̇ = ḟ(c) + Dcf(ċ) = ξ(c), since ḟ = ξ
and Dcf = 0.

Let t 7→ φt be a holomorphic family of Möbius transformations sending
v to vt, with φ0 = Id. Note that there is a holomorphic family of local
biholomorphisms ψt sending c to ct, with ψ0 = Id and

φt ◦ f = ft ◦ ψt.

Differentiating this identity with respect to t and evaluating at t = 0 yields
φ̇◦f = ξ+Df ◦ψ̇, whence Df ◦(ψ̇−f∗φ̇) = −ξ. Consequently, ψ̇−f∗φ̇ = ηξ

whence f∗φ̇ + ηξ is holomorphic in a neighborhood of c.
It follows that f∗θ + ηξ is holomorphic near c if and only if f∗(θ− φ̇) is

holomorphic near c. Since θ − φ̇ is holomorphic near v, this is the case if
and only if θ− φ̇ vanishes at v, i.e. if and only if θ(v) = φ̇(v) = v̇ = ξ(c).¤
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12 1. Bifurcation measure and Misiurewicz maps

For a finite set X ⊂ P1, we denote by T (X) the linear space of vector
fields on X; note that T (X) is canonically isomorphic to

⊕
x∈X TxP1.

Let f ∈ Ratd have 2d − 2 simple critical points, let A ⊂ P1 − C(f) be
finite, and set B = f(A)∪V(f). We shall say that a vector field τ ∈ T (B)
is guided by ξ ∈ TfRatd if

τ = f∗τ + ηξ on A and τ ◦ f = ξ on C(f).

Note that a priori, there might be distinct critical points c1 and c2 with
f(c1) = f(c2) but ξ(c1) 6= ξ(c2). In this case, no vector field can be guided
by ξ.

2.3 Quadratic differentials

Recall that a quadratic differential is a section of the complex line bundle
obtained as ⊗-square of the holomorphic cotangent bundle. For a finite
set X ⊂ P1, we denote by Q(P1, X) the set of all meromorphic quadratic
differentials whose poles are all simple and lie in X. This is a vector space
of dimension max

(|X| − 3, 0
)
.

Given q ∈ Q(P1, X) and a vector field τ , defined and holomorphic near
x ∈ X, we regard the product q ⊗ τ as a meromorphic 1-form defined in a
neighborhood of x, whence there is a residue Resx(q⊗ τ) at x. If τ1 and τ2

agree at x, then Resx(q⊗ τ1) = Resx(q⊗ τ2), since q has at worst a simple
pole at x. Thus it makes sense to talk about Resx(q ⊗ τ) even when τ is
only defined at x.

Given q ∈ Q(P1, X) and τ ∈ T (X), we define

〈q, τ〉:=2iπ
∑

x∈X

Resx(q ⊗ τ).

Lemma 4 Given τ ∈ T (X), let θ be a C∞ vector field on P1 which agrees
with τ on X and is holomorphic in a neighborhood of X. Then for every
q ∈ Q(P1, X),

〈q, τ〉 = −
∫

P1
q ⊗ ∂̄θ.

Proof: Let U be a finite union of smoothly bounded disks, with pairwise
disjoint closures, each enclosing a unique point of X, and such that θ is
holomorphic in a neighborhood of U . Then for any q ∈ Q(P1, X), we have

〈q, τ〉 =
∫

∂U

q ⊗ θ = −
∫

P1−U

q ⊗ ∂̄θ = −
∫

P1
q ⊗ ∂̄θ,

where the first equality is due to the Residue Theorem, the second to
Stokes’ Theorem, and the last from ∂̄θ = 0 in a neighborhood of U . ¤
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Given a rational map f : P1 → P1 and a meromorphic quadratic differ-
ential q on P1, we define the pushforward f∗q as follows. At a point w ∈ P1

which is neither a critical value nor the image of a pole, we set

f∗q(w)(τ1, τ2) =
∑

z∈f−1(w)

q(z)
(
(Dzf)−1τ1, (Dzf)−1τ2

)
.

The resulting quadratic differential f∗q is in fact globally meromorphic.
Moreover, if q ∈ Q(P1, A) then f∗q ∈ Q(P1, B) with B = f(A) ∪ V(f).
Checking that f∗q belongs to Q(P1, B) requires some justifications which
can be found in [DH] for example.

We denote by ∇ : Q(P1, A) → Q(P1, B) the linear map defined by

∇q:=q − f∗q.

Lemma 5 Let f ∈ Ratd be a rational map with all critical points simple and
let A ⊂ P1 − C(f) be finite. Set B = f(A) ∪ V(f) and let τ ∈ T (B) be a
vector field guided by ξ ∈ TfRatd. Then, for all q ∈ Q(P1, A), we have

〈∇q, τ〉 = 0.

Proof: Let θ be a C∞ vector field on P1 which agrees with τ on B and is
holomorphic in a neighborhood of B. Since τ ◦ f = ξ on C(f), Lemma 3
implies that the vector field f∗θ + ηξ is holomorphic on a neighborhood of
C(f). It follows that f∗θ+ηξ is C∞ on P1, holomorphic in a neighborhood of
A and agrees with f∗τ + ηξ = τ on A. Consequently, for any q ∈ Q(

P1, A
)

〈f∗q, τ〉 = −
∫

P1
f∗q⊗ ∂̄θ = −

∫

P1
q⊗ f∗∂̄θ = −

∫

P1
q⊗ ∂̄

(
f∗θ + ηξ

)
= 〈q, τ〉

where the first and last equalities follow from Lemma 4, the second from a
change of variable and the third from ∂̄ηξ = 0 on P1 −A. ¤

Lemma 6 Let f ∈ Ratd be postcritically finite. If f is not a flexible Lattès
map, then the linear endomorphism ∇ : Q(

P1,P(f)
)→ Q(

P1,P(f)
)

is
injective.

Proof: See [DH]. ¤

Proposition 2 Let f ∈ Ratd be postcritically finite with all critical points
simple and C(f) ∩ P(f) = ∅. Assume further that f is not a Lattès map.
If ξ ∈ TfRatd guides τ ∈ T (P(f)

)
then ξ ∈ TfO(f).
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Proof: Since, the vector space Q(
P1,P(f)

)
is finite dimensional, the injec-

tivity of ∇ : Q(
P1,P(f)

)→ Q(
P1,P(f)

)
implies its surjectivity. Thus, it

follows from lemma 5 that 〈q, τ〉 = 0 for every q ∈ Q(
P1,P(f)

)
.

Lemma 7 A vector field τ ∈ T (X) extends holomorphically to P1 if and
only if 〈q, τ〉 = 0 for every q ∈ Q(P1, X).

Proof: We may clearly assume without loss of generality that X contains
at least three distinct points x1, x2, x3. Let θ be the unique holomorphic
vector field on P1 which coincides with τ at x1, x2 and x3. We must show
that θ(x) = τ(x) for any x ∈ X − {x1, x2, x3}. Up to scale, there is a
unique meromorphic quadratic differential q with simple poles at x1, x2,
x3 and x. The globally meromorphic 1-form q ⊗ θ has only simple poles,
and these must lie in {x1, x2, x3, x}. The sum of residues of a meromorphic
1-form on P1 is 0. It follows that τ and θ coincide at x if and only if
Resx(q ⊗ θ) = Resx(q ⊗ θ), whence

∑

y∈{x1,x2,x3,x}
Resy(q ⊗ τ) =

∑

y∈{x1,x2,x3,x}
Resy(q ⊗ θ)

=
∑

y∈P1
Resy(q ⊗ θ) = 0. ¤

Consequently, τ admits a globally holomorphic extension θ ∈ aut(P1).
Since τ is guided by ξ, it follows from Lemma 3 that the vector field f∗θ+ηξ

is holomorphic on P1. Moreover, f∗θ + ηξ agrees with θ on P(f). Since a
rational map whose postcritical set contains only two points is conjugate to
z 7→ z±d, the set P(f) contains at least three points, whence the globally
holomorphic vector fields are equal. That is to say ηξ = θ − f∗θ with
θ ∈ aut(P1). Since ξ ∈ TfO(f) in view of Proposition 1, this completes the
proof of Proposition 2. ¤

2.4 Proof of Theorem 1

In this section, we prove Theorem 1. By assumption, f ∈ Ratd is postcrit-
ically finite with 2d − 2 distinct critical points, C(f) ∩ P(f) = ∅ and f is
not a Lattès map. Let the analytic germs

v : (Ratd, f) → (P1)2d−2 and a : (Ratd, f) → (P1)2d−2

be defined as in the Introduction. We shall show that the linear map
Dfv−Dfa is surjective and that its kernel is TfO(f).

Note that TfRatd has complex dimension 2d + 1. The map Dfv−Dfa
has maximal rank 2d− 2 if and only if the kernel has dimension 3. Now on
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O(f), we have v ≡ a, whence TfO(f) ⊆ Ker
(
Dfv−Dfa

)
. Since O(f) has

complex dimension 3, it suffices to show

Ker(Dfv−Dfa) ⊆ TfO(f).

Henceforth, we assume that ξ belongs to Ker(Dfv − Dfa). In view of
Proposition 2, it suffices to show that ξ guides a vector field τ ∈ T (P(f)

)
.

We begin by specifying τ on P(f). Let t 7→ ft be a family of rational
maps of degree d such that f0 = f and ḟ = ξ. If α is a repelling periodic
point of f then, by the Implicit Function Theorem, there is a unique germ
t 7→ αt with α0 = α such that αt is a periodic point of ft. For periodic
α ∈ P(f), we set

τ(α):=α̇ ∈ TαP1.

Note that if β = f(α), then βt = ft(αt) is a periodic point of ft. Evaluating
derivatives at t = 0 yields

τ(β) = β̇ = ḟ(α) + Dαf(α̇) = ξ(α) + Dαf
(
τ(α)

)
.

Since Dαf is invertible, we deduce that

(Dαf)−1
(
τ(β)

)
= (Dαf)−1

(
ξ(α)

)
+ τ(α)

whence
f∗τ(α) = −ηξ(α) + τ(α).

Thus, on the set of repelling periodic points contained in P(f), we have

τ = f∗τ + ηξ. (2.2)

Since there are no critical points in P(f), there is a unique extension of τ
to the whole postcritical set such that (2.2) remains valid. Note that since
no z ∈ P(f) is precritical, there is a unique analytic germ t 7→ zt such that
zt is preperiodic under ft, and we have τ(z) = ż.

To complete the proof of Theorem 1, it suffices to show that τ ◦ f = ξ
on C(f). So, let c ∈ C and for k ≥ 1, define vk

t :=f◦kt (ct). The critical
point c is the j-th critical point of f as listed in the Introduction. We have
vj(ft) = v`

t for some integer ` ≥ 1 and αt:=aj(ft) is a periodic point of ft

with α = v`. By assumption, ξ ∈ Ker(Dfv−Dfa), whence

v̇` = Dfvj(ξ) = Dfaj(ξ) = α̇ = τ(α).

Differentiating ft(vk
t ) = vk+1

t with respect to t yields

ξ(vk) + Dvkf(v̇k) = v̇k+1.
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16 1. Bifurcation measure and Misiurewicz maps

Applying (Dvkf)−1 gives −ηξ(vk) + v̇k = (Dvk
f)−1(v̇k+1), whence

v̇k = (Dvkf)−1(v̇k+1) + ηξ(vk).

We now proceed by decreasing induction on k ≥ 1. Since (2.2) holds on
P(f), if v̇k+1 = τ(vk+1), then

v̇k = (Dvkf)−1
(
τ ◦ f(vk)

)
+ ηξ(vk) = (f∗τ + ηξ)(vk) = τ(vk).

The desired result is obtained by taking k = 1: ξ(c) = v̇1 = τ(v1) = τ◦f(c).

3 The bifurcation measure

We will now prove that X ∗d ⊆ Supp(µbif). This will complete the proof of
our main theorem. Here and henceforth, we let f ∈ Ratd be a postcritically
finite map with only simple critical points, which satisfies C(f)∩P(f) = ∅
and is not a flexible Lattès map. It suffices to exhibit a 2d− 2-dimensional
complex manifold Σ ⊂ Ratd containing f and a basis of neighborhoods Σn

of f in Σ, such that ∫

Σn

(Tbif)∧(2d−2) > 0.

3.1 Another definition of the bifurcation current

We will use a second definition of the bifurcation current Tbif due to De-
Marco [DeM1] (see [DeM2] or [BB] for the equivalence of the two defini-
tions). The current Tbif may be defined by considering the behavior of the
critical orbits as follows.

Set J :={1, . . . , 2d − 2}. Let π : C2 − {0} → P1 be the canonical
projection. Denote by x̃:=(x1, x2) the points in C2. Let U ⊂ Ratd be a
sufficiently small neighborhood of f so that there are:

• holomorphic functions
{
cj : U → P1

}
j∈J following the critical points

of g as g ranges in U ,

• holomorphic functions
{
c̃j : U → C2 − {0}}

j∈J such that π ◦ c̃j = cj

and

• an analytic family U 3 g 7→ g̃ of nondegenerate homogeneous poly-
nomials of degree d such that π ◦ g̃ = g ◦ π.

The map G : U × C2 → R defined by

G(g, x̃):= lim
n→+∞

1
dn

log
∥∥g̃◦n(x̃)

∥∥
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is plurisubharmonic on U × C2. DeMarco [DeM2] proved that

Tbif

∣∣
U

=
2d−2∑

j=1

ddcGj

where Gj : U → R is defined by Gj(g):=G(
g, c̃j(g)

)
.

3.2 Definition of Σ

Let the analytic germs c, a, v : (Ratd, f) → (P1)2d−2 be defined as in the
Introduction. Set c:=c(f) and α:=a(f) = v(f). Given a rational map
g ∈ Ratd, let g : (P1)2d−2 → (P1)2d−2 be the map defined by

g(z):=
(
g(z1), . . . , g(z2d−2)

)
.

Recall that for g near f , we have vj(g) = g◦`j ◦ cj(g) for some integer
`j . Let pj be the period of αj . Let p be the least common multiple of
the periods pj . For g near f , let mj(g) be the multiplier of αj as a fixed
point of g◦p. Denote by ~x = (x1, . . . , x2d−2) the elements of C2d−2 and let−→
Mg : C2d−2 → C2d−2 be the linear map defined by

−→
Mg(~x):=

(
m1(g) · x1, . . . , m2d−2(g) · x2d−2

)
.

For every j ∈ J , αj is repelling. It follows that for g near f , there is a
local biholomorphism Ling : (C2d−2,~0) → (

(P1)2d−2, a(g)
)

linearizing g◦p,
that is

Ling ◦
−→
Mg = g◦p ◦ Ling.

In addition, we may choose Ling such that the germ (g, ~x) 7→ Ling(~x) is
analytic near (f,~0) and the germ (g, z) 7→ Lin−1

g (z) is analytic near (f, α).

Lemma 8 There exists an analytic germ S : (C2d−2,~0) → (Ratd, f) such
that for ~x near ~0

v ◦ S(~x) = LinS(~x).

Proof: Let ~h : (Ratd, f) → (C2d−2,~0) be the analytic germ defined by
~h(g):=Lin−1

g ◦ v(g). Then v(g) = Ling ◦ ~h(g) and a(g) = Ling(~0). Differen-
tiating with respect to g and evaluating at g = f yields

Dfv = Dfa + D~0Linf ◦Df
~h.

According to Theorem 1, the linear map Dfv−Dfa : TfRatd →
⊕

j∈J TαjP1

is surjective. Since D~0Linf : C2d−2 → ⊕
j∈J TαjP1 is invertible. Thus

Df
~h : TfRatd → C2d−2 has maximal rank. It follows from the Implicit

Function Theorem that there is a section S : (C2d−2,~0) → (Ratd, f) with
~h ◦ S = Id. This may be rewritten as v ◦ S(~x) = LinS(~x). ¤
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18 1. Bifurcation measure and Misiurewicz maps

For each j ∈ J , choose a neighborhood Vj of αj in P1 such that there is
a holomorphic section σj : Vj → C2 − {0} of π : C2 − {0} → P1. Fix r > 0
small enough that the germ S given by Lemma 8 and the germ Linf are

both defined and analytic on a neighborhood of ∆
2d−2

where ∆:=D(0, r),
and such that

Linf (∆
2d−2

) ⊂ V :=
∏

j∈J
Vj .

We set
Σ:=S(∆2d−2).

By definition, this subset of Ratd is a submanifold of complex dimension
2d− 2.

3.3 Definition of Σn

For n ≥ 1, set

Sn:=S ◦ −→M−n
f : ∆2d−2 → Σ and Σn:=Sn(∆2d−2) ⊂ Σ.

Clearly, the sets Σn form a basis of neighborhoods of f in Σ. For n ≥ 1,
let vn : Σ → P1 be the map defined by

vn(g):=g◦(np) ◦ v(g).

Note that for j ∈ J , we have vn
j (g) = g◦(`j+np) ◦ cj(g).

Lemma 9 The sequence (vn ◦ Sn) converges uniformly to Linf on ∆2d−2.

Proof: Note that the sequence (Sn) converges to f uniformly and exponen-
tially on ∆

2d−2
as n tends to ∞. It follows that the sequence (~x 7→ −→

MSn(~x))
converges uniformly and exponentially to

−→
Mf . Consequently the sequence(

~x 7→ −→
Mn

Sn(~x) ◦M−n
f (~x)

)
converges uniformly to the identity. Thus, for n

large enough and for any ~x ∈ ∆2d−2, setting gn:=Sn(~x), we have

Lingn
◦ −→Mn

gn
◦ −→M−n

f (~x) = gn
◦(np) ◦ Lingn

◦ −→M−n
f (~x)

= gn
◦(np) ◦ v ◦ S ◦M−n

f (~x)

= vn ◦ Sn(~x).

The result follows easily. ¤
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3.4 The proof

Here, we shall use the notation of Section 3.1. We assume that n is large
enough that Σn is contained in U , whence every map g ∈ Σn has a lift g̃
to homogeneous coordinates and there is a potential function G defined on
Σn × C2 such that

G(
g, g̃(x̃)

)
= d · G(g, x̃) and ∀λ ∈ C∗, G(g, λx̃) = G(g, x̃) + log |λ|.

Recall that by Lemma 9, the sequence (vn ◦Sn) converges uniformly to
Linf on ∆2d−2 and by assumption, Linf (∆

2d−2
) ⊂ V . From now on, let n

be sufficiently large so that vn(Σn) ⊆ V . In that case, for each j ∈ J , the
map

ṽn
j :=σj ◦ vn

j : Σn → C2 − {0}
is-well defined. In this case, we may define plurisubharmonic functions
Gn

j : ∆2d−2 → R by

Gn
j (x):=G(

Sn(x), ṽn
j ◦ Sn(x)

)
.

Lemma 10 If n is sufficiently large, then

S∗n(Tbif) = d−np
∑

j∈J
d−`j ddcGn

j .

Proof: Note that for g ∈ Σn and j ∈ J , we have

π ◦ g̃◦(`j+np)
(
c̃j(g)

)
= g◦(`j+np)

(
cj(g)

)
= vn

j (g) = π ◦ ṽn
j (g),

whence
g̃◦n

(
c̃j(g)

)
= λn

j (g) · ṽn
j (g)

for some holomorphic functions λn
j : Σn → C∗. Thus, if ~x ∈ ∆2d−2 and

gn:=Sn(~x), then

Gn
j (~x) = G(

gn, g̃◦(`j+np)
n

(
c̃j(gn)

))− log
∣∣λn

j (gn)
∣∣

= d`j+npG(
gn, c̃j(gn)

)− log
∣∣λn

j (gn)
∣∣

= d`j+npGj(gn)− log
∣∣λn

j (gn)
∣∣

= d`j+npGj ◦ Sn(~x)− log
∣∣λn

j ◦ Sn(~x)
∣∣.

Since log |λn
j ◦ Sn| is pluriharmonic on ∆2d−2, we have

ddcGn
j = d`j+np · ddc(Gj ◦ Sn) = d`j+np · S∗n(ddcGj).

Consequently, in view of DeMarco’s formula, we have

S∗n(Tbif) =
∑

j∈J
S∗n(ddcGj) = d−np

∑

j∈J
d−`j ddcGn

j .
¤
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Set
Mn:=

∫

Σn

Tbif
∧(2d−2).

To conclude the proof of the main theorem, we will now show that Mn > 0
for n large enough. In fact, we will show that there is a constant m > 0
such that

Mn ∼
n→+∞

m

d(2d−2)np
.

Set |`|:=∑
j∈J `j . For j ∈ J , let linj : ∆ → P1 be the map defined by

Linf (~x) =
(
lin1(x1), . . . , lin2d−2(x2d−2)

)

and set
Wj :=linj(∆).

Recall that µf is the equilibrium measure of f .

Lemma 11 We have

lim
n→+∞

d(2d−2)np ·Mn = (2d− 2)! · d−|`| ·
∏

j∈J
µf (Wj).

Proof: By Lemma 9, the sequences of functions vn
j ◦Sn converge uniformly

on ∆2d−2 to x 7→ linj(xj). So, the sequences of functions Gn
j : ∆2d−2 → R

converge uniformly to

G∞j : x 7→ G(
f, σj ◦ linj(xj)

)
.

Due to the uniform convergence of the potentials, we may write

lim
n→+∞

∫

∆2d−2


∑

j∈J
d−`j ddcGn

j



∧(2d−2)

=
∫

∆2d−2


∑

j∈J
d−`j ddcG∞j



∧(2d−2)

.

Note that G∞j only depends on the j-th coordinate. It follows that




2d−2∑

j=1

d−`j ddcG∞j



∧(2d−2)

= (2d− 2)!d−|`| ·
∧

j∈J
ddcG∞j .

In addition, G∞j (x) = Gj ◦ linj(xj) with Gj : Wj → R the subharmonic
function defined by Gj(z) = G(

f, σj(z)
)
. We have ddcGj = µf

∣∣
Wj

. There-
fore, according to Fubini’s theorem,

∫

∆2d−2


 ∧

j∈J
ddcG∞j


 =

∏

j∈J

(∫

∆

ddc (Gj ◦ linj)
)

=
∏

j∈J
µf (Wj). ¤
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3. The bifurcation measure 21

We now complete the proof. Since the periodic points αj are repelling,
they are in the support of the equilibrium measure µf . Thus, for every
j ∈ J , µf (Wj) > 0. As a consequence,

Mn ∼
n→+∞

m

d(2d−2)np
with m:=(2d− 2)! · d−|`| ·

2d−2∏

j=1

µf (Wj) > 0,

f is in the support of Tbif
∧(2d−2) and the conjugacy class of f is in the

support of µbif .
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