ON THE BIEBERBACH CONJECTURE AND HOLOMORPHIC
DYNAMICS.

XAVIER BUFF

ABSTRACT. In this note we prove that when P is a polynomial of degree d
with connected Julia set and when zo belongs to the filled-in Julia set K(P),
then |P(z0)| < d2. We also show that equality is achieved if and only if K(P)
is a segment of which one extremity is zg. in that case, P is conjugate to
a Tchebycheff polynomial or its opposite. The main tool in our proof is the
Bieberbach conjecture proved by de Branges in 1984.

1. INTRODUCTION.

Let us first recall two well-known dynamical results which are in the same vein
as ours.

Theorem 1. Let P be a monic centered polynomial with connected Julia set. Then,
for any zo € K(P), we have |zo| < 2 with equality if and only if K(P) is a segment
of which one extremity is zg.

Proof. Assume K is a compact connected subset of C and C \ K is conformally
isomorphic to C\ D. Let ¢ : C\D — C\ K be a conformal isomorphism, with
Laurent series expansion

by b
$(2) = b1z +by+ — + —2 +...
z z

Then, the Gronwall Area Formula asserts that the area of K is equal to ., n|b,|?.
It follows that |by| < |b_1|, with equality if and only if K is a straight line segment.
Moreover, when by = 0 and 2y € K, by considering the map (w) = y/éd(w?) — zo,
we get |zg| < 2|b1| with equality if and only if K is a straight line segment of which
one extremity is zg.

Then, observe that when P is a monic centered polynomial, the Bottcher coor-
dinate ¢ : C\ D — C\ K(P) has Laurent series expansion of the form

b_y  b_o
d(z) =2+ —t e

Indeed, b; = 1 because P is monic and by = 0 because P is centered. Theorem 1
follows immediately. ]

Theorem 2. Let P be a polynomial of degree d with connected Julia set. If o is a
fized point of P, then |P'(a)| < d?.

This is a weak version of an inequality due to Pommerenke [Po], Levine [L] and
Yoccoz [Y] (see [H] or [Pe]). The idea of the proof goes back to Bers’s Inequality
in the context of quasi-fuchsian groups. There, Bers proves that the length of a
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hyperbolic geodesic in Q(X,Y") is bounded by the hyperbolic length of the corre-
sponding geodesic on X or Y (see [B] Theorem 3 and [McM] Prop. 6.4). In [O]
Sect. 5.1, Otal gives a proof of Bers’s Inequality based on Koebe’s One-Quarter
Theorem. His proof is inspired by Ahlfors (see [A] Lemma 1).

In the present article, we present a generalization of those two theorems. We
will use the Bieberbach conjecture proved by de Branges in 1984.

De Branges’s Theorem. Let ¢ : D — C be a univalent mapping. If ¢(z) =
Y n>1an2", then for any n > 1, we have |ay/a1| < n. Besides, if |ax/a1| =k for
some integer k > 1, then ¢ is a rotation of the Koebe function, i.e., there exists a

real 0 such that
z

P(2) = A=ty

We obtain a result which does not only control the derivative of P at its fixed
points, but controls the derivative of P at all the points in the Julia set. Our main
observation is the following.

Lemma 1. Let f: (C,0) — (C,0) be a germ such that 0 is a superattracting fixed
point with local degree k > 2. Let ¢ : (C,0) — (C,0) be a Béttcher coordinate, i.e., a
germ which is univalent in a neighborhood of 0 and which satisfies ¢(2*) = f(#(2))
for z sufficiently close to 0. If ¢(z) =3, <, anz™, then

1 ag
res| —=,0 | =k—.
(f ) a

Remark. The result still holds if instead of germs, one considers formal power
series but we are not aware of a formal proof.

We say that a polynomial P is a Tchebycheff polynomial if P(cos z) = cos(dz),
where d is the degree of P. As a corollary of Lemma 1, we will show the following
two theorems.

Theorem 3. Assume P is a polynomial of degree d with connected Julia set. Then,
for any zo € K(P), we have |P'(20)| < d? with equality if and only if K(P) is a
segment, one extremity of which is zo. In that case, P is conjugate to a Tchebycheff
polynomaal or to its opposite.

Theorem 4. Assume P is a polynomial of degree d with disconnected Julia set.
Let gp : C — RY be the Green’s function of K(P) and set

G(P) = p(w).

= max
{wlP(wy=0y 7
Then, for any zy € C with gp(20) < G(P), we have |P'(zy)| < d?e(d=DEWP),

Remark. This inequality always holds for points in K (P).

2. PROOFS OF THE RESULTS.

Proof of Lemma 1. Let 43 be a small circle around 0 and let 72 be its image by
¢. Then,

() L e L S (2)
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Since ¢(2) = 3,5, an2", we have

¢'(z) a1 +2a0z+... +kap"t+O(2F) 1 2a3 1 kay 1

$(2F) a1 25 (1 + O(|z[F)) =gttt ot
Therefore .
1 . (;5/ z B @
res <f,0> = res ((b(z’f)’()) =0

Proof of Theorem 3. First, observe that when P is conjugate to a Tchebycheff
polynomial of degree d (or its opposite) K (P) is a segment and the derivative at
an extremity is =d2. The proof is not difficult and left to the reader.

Next, assume P is a polynomial of degree d with connected Julia set and z
belongs to the filled-in Julia set K (P). Let © be the simply connected sub-domain
of P! defined by

1
Q:{wew‘%+weW\Kw%.

Since zg € K(P), we see that Q C C, and since P has a superattracting fixed point
with local degree d at infinity, the rational map f : P! — P! defined by

1
w) =
1) = P+ 1/w) = 20
has a superattracting fixed point at 0 with local degree d. Any Bottcher coordinate
of f extends to a univalent mapping ¢ : D — Q and Lemma 1 asserts that writing

P(2) = 3,51 anz", we get
Qaq 1
d— =res|—,0].
ai (f >

Since P(2) = bg + b1(z — 20) + ... + ba(z — 20)?, we see that
1
f(w)
Therefore, res (1/f,0) = by = P’(2p). It now follows from de Branges’s Theorem
that

by by
= P 1 — = by — —_ —.
(Zo+ /w) 20 0 Zo—|—w+ +wd

q2d

[P'(z0)| = < d

with equality if and only if ¢ is a rotation of the Koebe function. In that case,
is a slit plane, and thus, K(P) is a segment of which one extremity is z.

We must now show that P is conjugate to a Tchebycheff polynomial or to its
opposite. Knowing that K (P) is a segment, this is classical. Conjugating P with an
affine map, we may assume that K (P) = [—1,1]. We define ¢ : P*\D — P\ [-1, 1]
to be the conformal representation

o= (=41).

The conformal representation ¢~ : P\ [~1,1] — P!\ D conjugates the proper
mapping P : P!\ [-1,1] — P!\ [~1,1] to a proper mapping from P! \ D to it-
self, having a superattracting fixed point of degree d at infinity. This mapping is
necessarily of the form z +— A\z¢, with |\| = 1.
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Since K(P) is totally invariant, the polynomial P necessarily maps the set
{—1,1} into itself. Besides, ¥~ 1(2) tends to £1 as z tends to £1. Therefore,
the map 2z — Az maps the set {—1,1} into itself. This shows that A = +1. Hence,

(Ve P'\D)  P(i(2)) = 9(£27).
As z — € € S, we get
idd 4 o—ido

0 ,—if
P(cosf) = P (e—i—;) = :I:f = + cos(df).

Proof of Theorem 4. We will mimick the previous proof. We assume that
gp(z0) < G(P) and we set

Q:{wepl‘gp(zo+;)>G(P)}.

We define f : P! — P! by f(w) = 1/(P(20 + 1/w) — 29). Then the Béttcher
coordinate of f at 0 extends to a univalent mapping ¢ between the disk centered
at 0 with radius e~ ¢(*) and the domain Q C C. Since the mapping
2 ¢(€_G(P)Z) — Z ane—nG(P)zn’
n>1
is univalent in the unit disk, de Branges’s Theorem only allows us to conclude that
age—dG(P)

a1e~G(P)

[P’ (20)] = d % = deld=DEP) < d2eld-1G(P).
1

The inequality is strict because the complement of 2 has non-empty interior, and
therefore, 2 cannot be a slit plane. [ ]

3. APPLICATION.

A possible application of Theorem 3 is the following.

Corollary 1. Let d > 3 be an integer, and a = (as, . ..,aq_1) be a point in C4=2.
Then, the Julia set of the polynomial P,(z) = d?*z + as2® + ...+ aq 12971 + 24 is
connected, if and only if P, is conjugate to a Tchebycheff polynomial.

Proof. On the one hand, if P, is conjugate to a Tchebycheff polynomial, its Julia
set is a segment and therefore, it is connected. On the other hand, observe that
0 is a fixed point with multiplier d2. Therefore, Theorem 3 shows that if J(P,) is
connected, then P, is conjugate to a Tchebycheff polynomial or its opposite and
0 is an extremity of K(P,). Since 0 is fixed, P, may always be conjugate to a
Tchebycheff polynomial. [ ]

Every polynomial of degree d having a fixed point with multiplier d? is conjugate
to a polynomial P,. The family (P,),ecde—2 is a co-dimension 1 algebraic sub-variety
of the space of polynomials up to conjugacy. The set of polynomials P, which are
conjugate to a Tchebycheff polynomial is finite but not empty. Therefore, for
each degree d > 3, we produce an example of co-dimension 1 algebraic family of
polynomials for which the connectivity locus is non-empty and discrete.
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