Dynamics of quadratic polynomials Journée à la mémoire de Jean-Christophe Yoccoz 1er juin 2017 Collège de France

Xavier Buff ¹ Marguerite Flexor

¹Institut de Mathématiques de Toulouse

X. Buff and M. Flexor Dynamics of quadratic polynomials

• Imp • • model • •

.≣⇒

Polynomial dynamics

- $P : \mathbb{C} \to \mathbb{C}$ is a complex polynomial.
- $(z_n)_{n\geq 0}$ is defined by $z_0 \in \mathbb{C}$ and $z_{n+1} = P(z_n)$.

Question

What is the long term behavior of the sequence (z_n) ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Polynomial dynamics

- $P : \mathbb{C} \to \mathbb{C}$ is a complex polynomial.
- $(z_n)_{n\geq 0}$ is defined by $z_0 \in \mathbb{C}$ and $z_{n+1} = P(z_n)$.

Question

What is the long term behavior of the sequence (z_n) ?

- $\overline{\mathbb{C}}:=\mathbb{C}\cup\{\infty\}$ is compact.
- $\omega(z_0)$ is the set of limit values of the sequence (z_n) .

Question

How does $\omega(z_0)$ depend on z_0 ?

<ロ> (四) (四) (三) (三) (三)

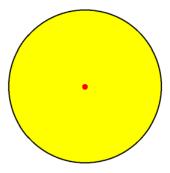
The filled-in Julia set

- Study initiated by Fatou (1919) and Julia (1920).
- Contributions by Cremer (1932-36), Siegel (1942), Brolin, Guckenheimer, Jakobson....
- Very active in the last 20 years of the last century with the help of computer pictures.

Definition

The filled-in Julia set of *P* is the set K(P) of points $z_0 \in \mathbb{C}$ for which the sequence (z_n) is bounded.

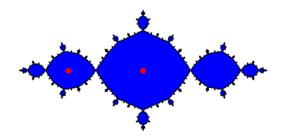
ヘロト 人間 とくほ とくほとう



$$P(z) = z^2$$

• If $|z_0| < 1$, $\omega(z_0) = \{0\}$ and if $|z_0| > 1$, $\omega(z_0) = \{\infty\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

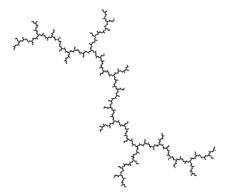


$$P(z) = z^2 - 1$$

• If z_0 is blue, $\omega(z_0) = \{0, -1\}$.

<ロト <回 > < 注 > < 注 > 、

æ



$$P(z) = z^2 + i$$

• $\mathcal{K}(z^2 + i)$ is a dendrite. For almost every z_0 , $\omega(z_0) = \{\infty\}$.

<週 → < 注 → < 注 → … 注

$$P(z) = z^2 + 1/2$$

• $K(z^2 + 1/2)$ is a Cantor set.

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Definition

The Julia set J(P) is the topological boundary of K(P).

Definition

The Fatou set is the complement of J(P).

• Stability : the map $z \mapsto \omega(z)$ is continuous on the Fatou set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Definition

The Julia set J(P) is the topological boundary of K(P).

Definition

The Fatou set is the complement of J(P).

• Stability : the map $z \mapsto \omega(z)$ is continuous on the Fatou set.

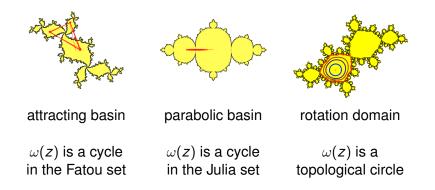
• Chaos :

- J(P) is the closure of the set of repelling periodic points;
- the map $z \mapsto \omega(z)$ is discontinuous on the Julia set.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Theorem (Fatou)

The Fatou set of a polynomial consists of attracting basins, parabolic basins and/or rotation domains.



Existence of Siegel disks

•
$$Q_{\theta}(z) = e^{2\pi i \theta} z + z^2$$
 with $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

• Q_{θ} fixes z = 0 with multiplier $e^{2\pi i\theta}$.

Theorem (Siegel 1942)

If θ is Diophantine, then Q_{θ} has a Siegel disk.

• p_k/q_k are the approximants of θ given by the continued fraction algorithm.

•
$$\theta$$
 is a Brjuno number if $\sum_{k\geq 0} \frac{\log q_{k+1}}{q_k} < +\infty.$

Theorem (Brjuno 1969)

If θ is a Brjuno number, then Q_{θ} has a Siegel disk.

ヘロト 人間 とくほとく ほとう

Existence of Siegel disks

•
$$Q_{\theta}(z) = e^{2\pi i \theta} z + z^2$$
 with $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

• Q_{θ} fixes z = 0 with multiplier $e^{2\pi i\theta}$.

Theorem (Siegel 1942)

If θ is Diophantine, then Q_{θ} has a Siegel disk.

• p_k/q_k are the approximants of θ given by the continued fraction algorithm.

•
$$\theta$$
 is a Brjuno number if $\sum_{k\geq 0} \frac{\log q_{k+1}}{q_k} < +\infty.$

Theorem (Brjuno 1969)

If θ is a Brjuno number, then Q_{θ} has a Siegel disk.

Theorem (Yoccoz 1988)

If Q_{θ} has a Siegel disk, then θ is a Brjuno number.

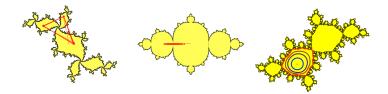
The critical orbit

•
$$P_c(z) = z^2 + c$$
.

• P_c has a critical point at z = 0.

Theorem (Fatou)

An attracting basin or a parabolic basin contains a critical point. The boundary of a Siegel disk is accumulated by a critical orbit.



Theorem (Fatou-Shishikura)

A quadratic polynomial has at most one non repelling cycle.

X. Buff and M. Flexor Dynamics of quadratic polynomials

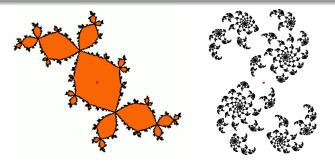
The critical orbit

•
$$P_c(z) = z^2 + c$$
.

• P_c has a critical point at z = 0.

Theorem (Fatou)

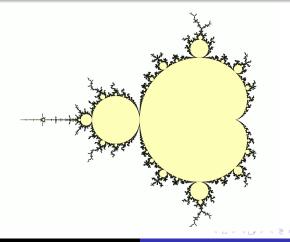
The filled-in Julia set $K(P_c)$ is connected if $0 \in K(P_c)$. Otherwise, it is a Cantor set.



The Mandelbrot set

Definition

The Mandelbrot set is the set *M* of parameters $c \in \mathbb{C}$ for which $K(P_c)$ is connected.



The boundary of M

Conjecture

Area $(\partial M) = 0$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

The boundary of M

Conjecture

Area $(\partial M) = 0$.

Theorem (Jakobson 1981)

 $Length(\mathbb{R} \cap \partial M) > 0.$

Yoccoz has given a proof which can be extended to higher dimension.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The boundary of M

Conjecture

Area $(\partial M) = 0$.

Theorem (Jakobson 1981)

 $Length(\mathbb{R} \cap \partial M) > 0.$

Yoccoz has given a proof which can be extended to higher dimension.

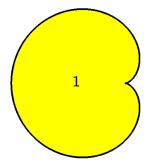
Theorem (Shishikura 1991)

 $Hdim(\partial M) = 2.$

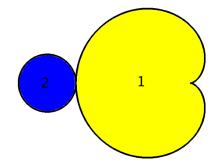
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

The interior of *M* : hyperbolic component of period 1

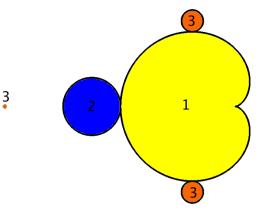


The interior of *M* : hyperbolic component of period 2



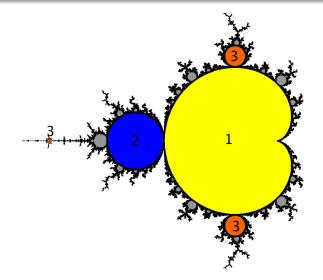
문 🛌 🖻

The interior of *M* : hyperbolic components of period 3



э

The interior of *M* : hyperbolic components



The interior of M

Conjecture (Fatou)

If $c \in \overset{\circ}{M}$, then P_c has an attracting cycle.

The interior of M

Conjecture (Fatou)

If $c \in \overset{\circ}{M}$, then P_c has an attracting cycle.

Theorem (Douady-Hubbard 1982)

If the Mandelbrot set is locally connected, the conjecture is true.

Conjecture (MLC)

The Mandelbrot set is Locally Connected.

Yoccoz has a major contribution towards the proof of MLC.

・ 戸 ・ ・ 三 ・ ・

The interior of M

Conjecture (Fatou)

If $c \in \overset{\circ}{M}$, then P_c has an attracting cycle.

Theorem (Douady-Hubbard 1982)

If the Mandelbrot set is locally connected, the conjecture is true.

Conjecture (MLC)

The Mandelbrot set is Locally Connected.

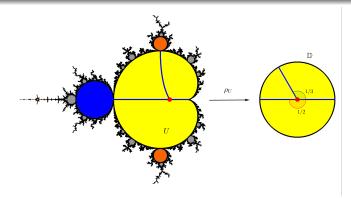
Yoccoz has a major contribution towards the proof of MLC.

Theorem (Graczyk-Swiatek, Lyubich 1997)

If $c \in \mathbb{R} \cap \check{M}$, then P_c has an attracting cycle.

・ 回 ト ・ ヨ ト ・ ヨ ト

Hyperbolic components : internal address

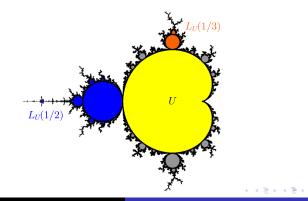


- *U* is a hyperbolic component.
- $\rho_U(c)$ is the multiplier of the attracting cycle of P_c
- $\rho_U : U \to \mathbb{D}$ is an isomorphism and extends as a homeomorphism $\rho_U : \overline{U} \to \overline{\mathbb{D}}$.

•
$$\gamma_U(\theta) := \rho_U^{-1}(e^{2\pi i\theta}).$$

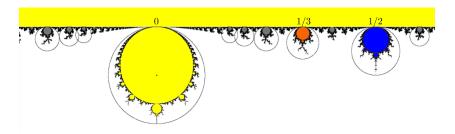
Theorem (Yoccoz)

If U a hyperbolic component, then
$$M \setminus \overline{U} = \bigsqcup_{\theta \in \mathbb{Q}/\mathbb{Z}} L_U(\theta)$$
 with $L_U(\theta)$ connected, $\overline{L_U(\theta)} \cap \overline{U} = \gamma_U(\theta)$ and $\operatorname{diam}(L_U(\frac{p}{q})) \xrightarrow[q \to \infty]{} 0$.



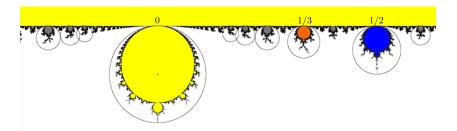
Theorem (Yoccoz)

If U has period $n \ge 1$ and $c \in L_U(p/q)$, then P_c has a cycle of period n with multiplier $\rho_U(c) = e^{2\pi i \tau}$ where τ belongs to the disk contained in the lower half-plane, tangent to \mathbb{R} at p/q, with radius $n \log 2/(2\pi q)$.



Theorem (Yoccoz)

If U has period $n \ge 1$ and $c \in L_U(p/q)$, then P_c has a cycle of period n with multiplier $\rho_U(c) = e^{2\pi i \tau}$ where τ belongs to the disk contained in the lower half-plane, tangent to \mathbb{R} at p/q, with radius $n \log 2/(2\pi q)$.



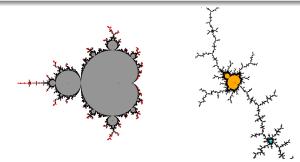
Corollary (Yoccoz)

If P_c has an indifferent cycle, then M is locally connected at c.

X. Buff and M. Flexor Dynamics of quadratic polynomials

Theorem (Douady-Hubbard)

The Mandelbrot set contains copies of itself.



Theorem (Douady-Hubbard)

Every parameter c such that $P_c^{\circ n}(0) = 0$ is the center of a copy of the Mandelbrot set.

- < ≣ → <

э

.⊒...>

Renormalization

Definition

The polynomial P_c is renormalizable if c belongs to a copy of M.

Definition

The polynomial P_c is infinitely renormalizable if *c* belongs to an infinite sequence of nested copies of *M*.

く 同 と く ヨ と く ヨ と

Renormalization

Definition

The polynomial P_c is renormalizable if c belongs to a copy of M.

Definition

The polynomial P_c is infinitely renormalizable if c belongs to an infinite sequence of nested copies of M.

Theorem (Yoccoz)

If P_c has no indifferent cycle and is not infinitely renormalizable,

- K(P_c) is locally connected and
- M is locally connected at c.

ヘロト ヘ戸ト ヘヨト ヘヨト

Renormalization

Definition

The polynomial P_c is renormalizable if c belongs to a copy of M.

Definition

The polynomial P_c is infinitely renormalizable if c belongs to an infinite sequence of nested copies of M.

Theorem (Yoccoz)

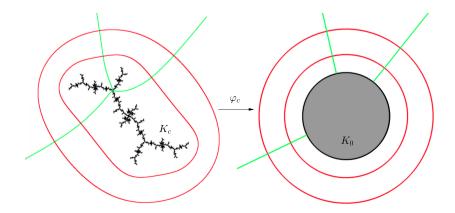
If P_c has no indifferent cycle and is not infinitely renormalizable,

- K(P_c) is locally connected and
- M is locally connected at c.

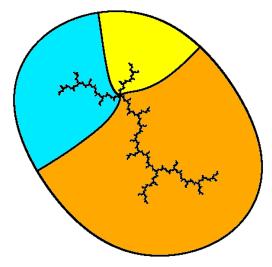
Corollary

If c is in the interior of M but not in an infinite sequence of nested copies of M, then P_c has an attracting cycle.

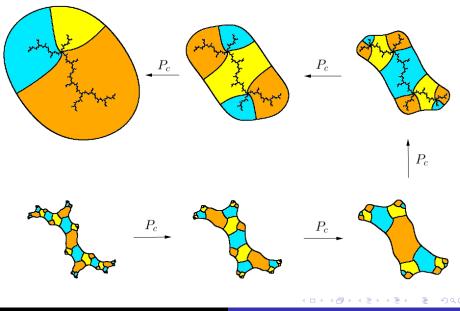
External rays and equipotentials

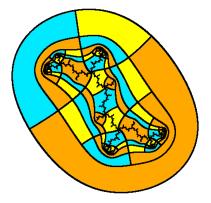


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



・ロト・ロト・モート・ヨー シック





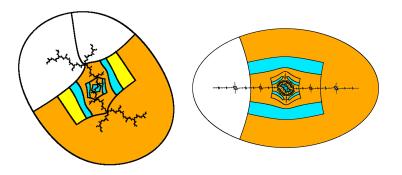
- The puzzle pieces are either disjoint or nested.
- The intersection of a puzzle piece with K_c is connected.

・ロト ・ 理 ト ・ ヨ ト ・

3

Proposition

- If *P_c* is not renormalizable, any sequence of nested puzzle pieces shrinks down to a point.
- If P_c is renormalizable, the sequence of puzzle pieces containing 0 shrinks down to a copy of a filled-in Julia set.

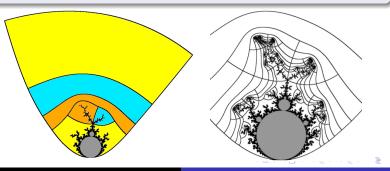


The Yoccoz Parapuzzles

• Yoccoz constructs parapuzzles covering the limbs of *M*.

Proposition

- If P_c is not renormalizable, the sequence of parapuzzle pieces containing c shrinks down to {c}.
- If *P_c* is renormalizable, the sequence of puzzle pieces containing c shrinks down to the copy of *M* containing c.



The Yoccoz Parapuzzles for the 1/2-limb

