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Polynomial dynamics

P : C→ C is a complex polynomial.
(zn)n≥0 is defined by z0 ∈ C and zn+1 = P(zn).

Question
What is the long term behavior of the sequence (zn)?

C := C ∪ {∞} is compact.
ω(z0) is the set of limit values of the sequence (zn).

Question
How does ω(z0) depend on z0 ?
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The filled-in Julia set

Study initiated by Fatou (1919) and Julia (1920).
Contributions by Cremer (1932-36), Siegel (1942), Brolin,
Guckenheimer, Jakobson. . . .
Very active in the last 20 years of the last century with the
help of computer pictures.

Definition
The filled-in Julia set of P is the set K (P) of points z0 ∈ C for
which the sequence (zn) is bounded.
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Examples

P(z) = z2

If |z0| < 1, ω(z0) = {0} and if |z0| > 1, ω(z0) = {∞}.
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Examples

P(z) = z2 − 1

If z0 is blue, ω(z0) = {0,−1}.
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Examples

P(z) = z2 + i

K (z2 + i) is a dendrite. For almost every z0, ω(z0) = {∞}.
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Examples

P(z) = z2 + 1/2

K (z2 + 1/2) is a Cantor set.
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Fatou and Julia sets

Definition
The Julia set J(P) is the topological boundary of K (P).

Definition
The Fatou set is the complement of J(P).

Stability : the map z 7→ ω(z) is continuous on the Fatou set.

Chaos :
J(P) is the closure of the set of repelling periodic points ;
the map z 7→ ω(z) is discontinuous on the Julia set.
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The Fatou set

Theorem (Fatou)
The Fatou set of a polynomial consists of attracting basins,
parabolic basins and/or rotation domains.

attracting basin parabolic basin rotation domain

ω(z) is a cycle ω(z) is a cycle ω(z) is a
in the Fatou set in the Julia set topological circle
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Existence of Siegel disks

Qθ(z) = e2πiθz + z2 with θ ∈ R \Q.
Qθ fixes z = 0 with multiplier e2πiθ.

Theorem (Siegel 1942)

If θ is Diophantine, then Qθ has a Siegel disk.

pk/qk are the approximants of θ given by the continued
fraction algorithm.

θ is a Brjuno number if
∑
k≥0

log qk+1

qk
< +∞.

Theorem (Brjuno 1969)
If θ is a Brjuno number, then Qθ has a Siegel disk.

Theorem (Yoccoz 1988)
If Qθ has a Siegel disk, then θ is a Brjuno number.
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The critical orbit

Pc(z) = z2 + c.
Pc has a critical point at z = 0.

Theorem (Fatou)
An attracting basin or a parabolic basin contains a critical point.
The boundary of a Siegel disk is accumulated by a critical orbit.

Theorem (Fatou-Shishikura)
A quadratic polynomial has at most one non repelling cycle.
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The critical orbit

Pc(z) = z2 + c.
Pc has a critical point at z = 0.

Theorem (Fatou)

The filled-in Julia set K (Pc) is connected if 0 ∈ K (Pc).
Otherwise, it is a Cantor set.
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The Mandelbrot set

Definition
The Mandelbrot set is the set M of parameters c ∈ C for which
K (Pc) is connected.
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The boundary of M

Conjecture

Area(∂M) = 0.

Theorem (Jakobson 1981)

Length(R ∩ ∂M) > 0.

Yoccoz has given a proof which can be extended to higher
dimension.

Theorem (Shishikura 1991)

Hdim(∂M) = 2.
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The interior of M : hyperbolic component of period 1
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The interior of M : hyperbolic component of period 2
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The interior of M : hyperbolic components of period 3
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The interior of M : hyperbolic components
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The interior of M

Conjecture (Fatou)

If c ∈
◦
M, then Pc has an attracting cycle.

Theorem (Douady-Hubbard 1982)
If the Mandelbrot set is locally connected, the conjecture is true.

Conjecture (MLC)
The Mandelbrot set is Locally Connected.

Yoccoz has a major contribution towards the proof of MLC.

Theorem (Graczyk-Swiatek, Lyubich 1997)

If c ∈ R ∩
◦
M, then Pc has an attracting cycle.
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Hyperbolic components : internal address

U is a hyperbolic component.
ρU(c) is the multiplier of the attracting cycle of Pc

ρU : U → D is an isomorphism and extends as a
homeomorphism ρU : U → D.
γU(θ) := ρ−1

U (e2πiθ).
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Limbs of the Mandelbrot set

Theorem (Yoccoz)

If U a hyperbolic component, then M \ U =
⊔

θ∈Q/Z

LU(θ) with

LU(θ) connected, LU(θ) ∩ U = γU(θ) and diam
(
LU(

p
q )
)
−→
q→∞

0.
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The Yoccoz Inequality

Theorem (Yoccoz)

If U has period n ≥ 1 and c ∈ LU(p/q), then Pc has a cycle of
period n with multiplier ρU(c) = e2πiτ where τ belongs to the
disk contained in the lower half-plane, tangent to R at p/q, with
radius n log 2/(2πq).

Corollary (Yoccoz)
If Pc has an indifferent cycle, then M is locally connected at c.
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Copies of the Mandelbrot set

Theorem (Douady-Hubbard)
The Mandelbrot set contains copies of itself.

Theorem (Douady-Hubbard)

Every parameter c such that P◦nc (0) = 0 is the center of a copy
of the Mandelbrot set.
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Renormalization

Definition
The polynomial Pc is renormalizable if c belongs to a copy of M.

Definition
The polynomial Pc is infinitely renormalizable if c belongs to an
infinite sequence of nested copies of M.

Theorem (Yoccoz)
If Pc has no indifferent cycle and is not infinitely renormalizable,

K (Pc) is locally connected and
M is locally connected at c.

Corollary
If c is in the interior of M but not in an infinite sequence of
nested copies of M, then Pc has an attracting cycle.
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External rays and equipotentials
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The Yoccoz Puzzles
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The Yoccoz Puzzles
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The Yoccoz Puzzles

The puzzle pieces are either disjoint or nested.
The intersection of a puzzle piece with Kc is connected.
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The Yoccoz Puzzles

Proposition
If Pc is not renormalizable, any sequence of nested puzzle
pieces shrinks down to a point.
If Pc is renormalizable, the sequence of puzzle pieces
containing 0 shrinks down to a copy of a filled-in Julia set.
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The Yoccoz Parapuzzles

Yoccoz constructs parapuzzles covering the limbs of M.

Proposition
If Pc is not renormalizable, the sequence of parapuzzle
pieces containing c shrinks down to {c}.
If Pc is renormalizable, the sequence of puzzle pieces
containing c shrinks down to the copy of M containing c.
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The Yoccoz Parapuzzles for the 1/2-limb
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