Sequences, differential equations and billiards

Xavier Buff

Institut de Mathématiques de Toulouse

October 5, 2022

Xavier Buff Sequences, differential equations and billiards

★ E → < E →</p>

- X is a manifold.
- $F: X \to X$ is a map.

•
$$x_0 \in X$$
 and $x_{n+1} := F(x_n)$.

Question

What is the behavior of the sequence (x_n) ?

ヘロア ヘビア ヘビア・

3

- X is a compact manifold.
- $F: X \to X$ is a continuous map.

•
$$x_0 \in X$$
 and $x_{n+1} := F(x_n)$.

Question

What is the behavior of the sequence (x_n) ?

Example

- $X = \mathbb{R}/\mathbb{Z}$ and $F : x \mapsto x + \theta$ is the rotation of angle θ .
- If θ is irrational, orbits are dense.
- If θ is rational, orbits are finite sets.

The ω -limit set

The set ω(x₀) of accumulation points of the sequence (x_n) is an invariant compact set.

Question

Does the compact set $\omega(x)$ depend continuously on x?

ヘロト ヘ戸ト ヘヨト ヘヨト

The ω -limit set

The set ω(x₀) of accumulation points of the sequence (x_n) is an invariant compact set.

Question

Does the compact set $\omega(x)$ depend continuously on x?

No in general.

Example

•
$$X = \mathbb{R} \cup \{\infty\}$$
 and $F : x \mapsto x^2$.

• If
$$|x| < 1$$
, $\omega(x) = \{0\}$.

• If
$$|x| > 1$$
, $\omega(x) = \{\infty\}$.

• If
$$|x| = 1$$
, $\omega(x) = \{1\}$.

イロト イポト イヨト イヨト

Holomorphic dynamical systems

- X is a compact complex manifold.
- $F: X \to X$ is a holomorphic map.

Example

- $X = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere.
- $F: X \to X$ is a polynomial of degree ≥ 2 .

・ 回 ト ・ ヨ ト ・ ヨ ト

Holomorphic dynamical systems

- X is a compact complex manifold.
- $F: X \to X$ is a holomorphic map.

Example

- $X = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere.
- $F: X \to X$ is a polynomial of degree ≥ 2 .

Definition

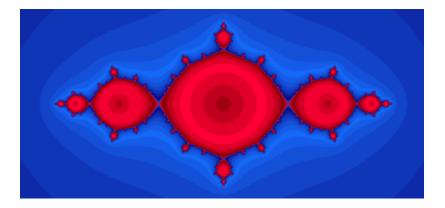
- The Fatou set *F_F* is the largest open set on which the family of iterates (*F*^{◦n}) is equicontinuous.
- The Julia set $\mathcal{J}_F \subseteq X$ is the complement of \mathcal{F}_F .

Proposition

The map $x \mapsto \omega(x)$ is continuous on \mathcal{F}_F .

ヘロト ヘワト ヘビト ヘビト

The Fatou set of $F: z \mapsto z^2 - 1$



Xavier Buff Sequences, differential equations and billiards

ヘロト 人間 とくほとくほとう

2

Differential equations

- X is a manifold.
- \vec{v} is a vector field on X.
- We study solutions of $\dot{\gamma} = \vec{v} \circ \gamma$ with $\dot{\gamma}(t) := \frac{d\gamma(t)}{dt}$.
- $\gamma_x : I_x \to X$ is the maximal solution satisfying $\gamma_x(0) = x$.

Example

- $X = \mathbb{R}^n$.
- $\vec{v}(x) = x$ is the radial vector field.

•
$$\gamma_x(t) = \mathrm{e}^t \cdot x.$$

ヘロト ヘ団ト ヘヨト ヘヨト

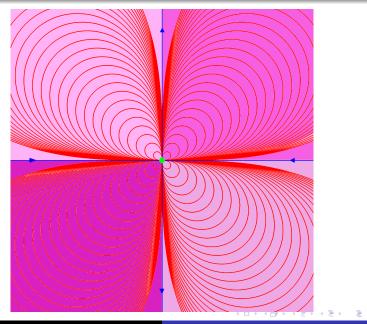
- Consider the stationary flow of a fluid.
- In a Lagrangian approach, the solution γ_x(t) is the time-parametrization of the trajectory of a particle which passes at the point x at time t = 0.
- In an Eulerian approach, the vector field v is the velocity field, i.e., the vector v(x) is the speed of a particle as it passes at the point x:

$$\vec{v}(x) = \dot{\gamma}_x(0).$$

• The fluid may be incompressible, irrotational, ...

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Trajectories for $\vec{v}(z) = -z^3$ in \mathbb{C}



Xavier Buff Sequences, differential equations and billiards

In order to draw trajectories of a differential equation, one may use an iterative scheme.

Definition

If $X = \mathbb{R}^n$ or $X = \mathbb{C}^n$, the Euler method with step $\varepsilon \in (0, +\infty)$ for the vector field \vec{v} is the map $F_{\varepsilon} : X \to X$ defined by

$$F_{\varepsilon}(x) := x + \varepsilon \vec{v}(x).$$

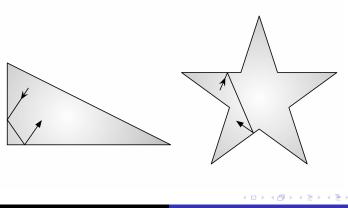
Proposition

If $n = \mathcal{O}(1/\varepsilon)$, then $F_{\varepsilon}^{\circ j}(x)$ remains close to $\gamma_x(j)$ for $j \in [0, n]$.

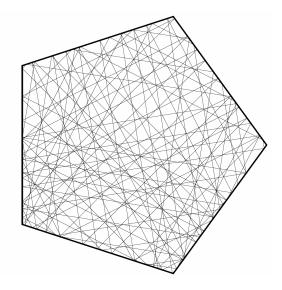
くロト (過) (目) (日)

Billiards

- A *billiard table* is a connected polygon in \mathbb{R}^2 .
- A billiard trajectory is a straight-line path which begins at some point in the interior of the table, and bounces off the edges with angle of reflection equal to the angle of incidence.



A billiard trajectory on the regular pentagon



프 🖌 🔺 프 🛌

Proposition

In a triangular billiard, all orbits are dense or periodic.

Proposition

In an acute triangle there is always a periodic trajectory.

Question

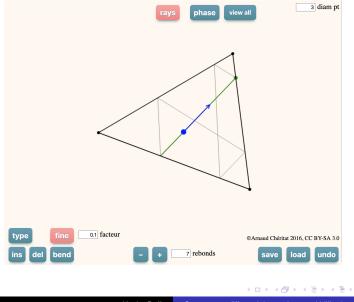
In a triangular billiard, does there always exist a periodic trajectory?

Answer

- Yes in an acute triangle.
- Yes if the angle are rational multiples of *π*.

イロト イポト イヨト イヨト

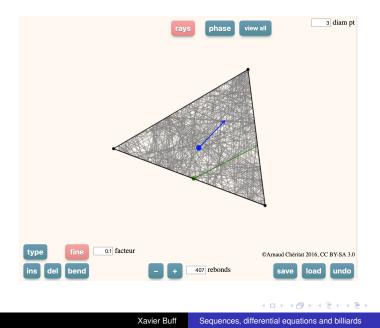
A periodic trajectory in an acute triangle



Xavier Buff Sequences, differential equations and billiards

э

A dense trajectory in an acute triangle



Proposition

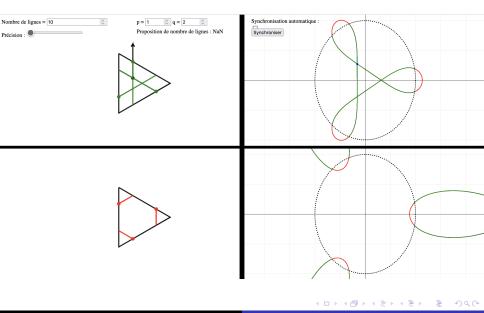
In an equilateral triangle, a trajectory is periodic if and only if its slope (with respect to the sides of the triangle) is rational.

Theorem (Valdez)

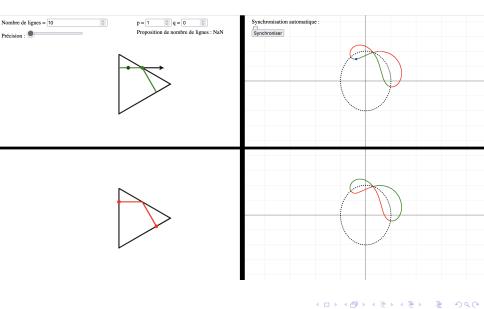
The trajectories for the vector field $\vec{v}(x, y) = (y^2, x^2)$ in \mathbb{C}^2 are understandable in terms of the trajectories in an equilateral triangle.

くロト (過) (目) (日)

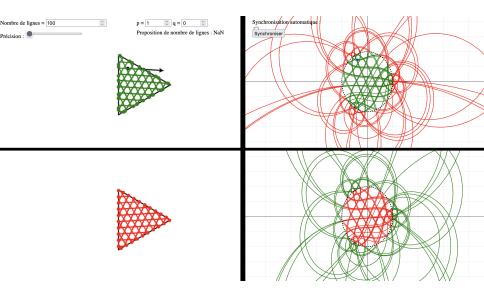
Equilateral triangle and $\vec{v}(x, y) = (y^2, x^2)$ on \mathbb{C}^2



Equilateral triangle and $\vec{v}(x, y) = (y^2, x^2)$ on \mathbb{C}^2



Equilateral triangle and $\vec{v}(x, y) = (y^2, x^2)$ on \mathbb{C}^2



ヘロト 人間 とくほとく ほとう

3

Theorem

For $\lambda \in (1, +\infty)$, the polynomial endomorphism $F_{\lambda} : \mathbb{C}^2 \to \mathbb{C}^2$ defined by

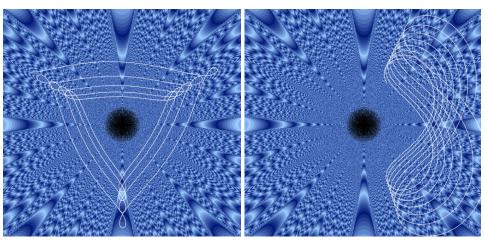
$$F_{\lambda}\left(\begin{array}{c} x\\ y\end{array}\right) = \left(\begin{array}{c} x\\ y\end{array}\right) + \left(\begin{array}{c} y^{2}\\ x^{2}\end{array}\right) + \lambda xy\left(\begin{array}{c} x\\ y\end{array}\right)$$

has infinitely many spiralling domains contained in distinct Fatou components.

ヘロン 人間 とくほ とくほ とう

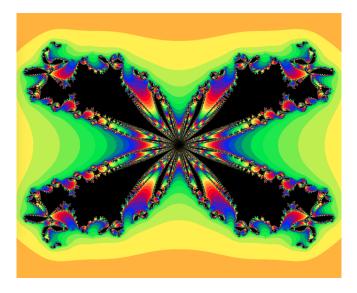
3

The dynamics of $F_0(x, y) = (x + y^2, y + x^2)$



・ロト ・ 同ト ・ ヨト ・ ヨト

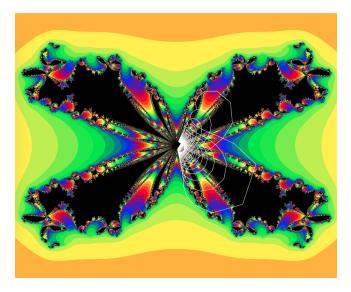
The dynamics of $F_1(x, y) = (x + y^2 + x^2y, y + x^2 + xy^2)$



Xavier Buff Sequences, differential equations and billiards

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

The dynamics of $F_1(x, y) = (x + y^2 + x^2y, y + x^2 + xy^2)$

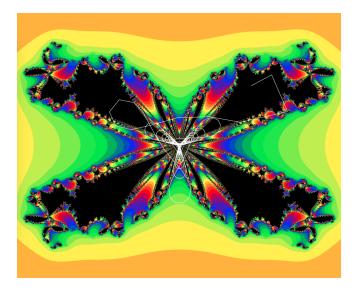


・ロト ・聞 と ・ ヨ と ・ ヨ と 。

The dynamics of $F_1(x, y) = (x + y^2 + x^2y, y + x^2 + xy^2)$

< 回 > < 回 > < 回 > .

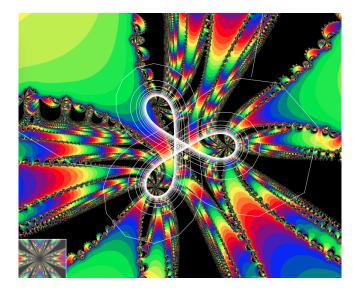
The dynamics of $F_1(x, y) = (x + y^2 + x^2y, y + x^2 + xy^2)$



Xavier Buff Sequences, differential equations and billiards

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

The dynamics of $F_1(x, y) = (x + y^2 + x^2y, y + x^2 + xy^2)$



・ 同 ト ・ ヨ ト ・ ヨ ト …