
ON THE GAUSS IMAGE PROBLEM

JÉRÔME BERTRAND

Abstract. In this note, we solve the Gauss image problem given two Borel measures on the
unit sphere, one of which is absolutely continuous with respect to the uniform measure.

1. Introduction

In this note, we consider the Gauss image problem. Namely, given two (sub)-measures λ and µ
on Sm, does there exist a convex body K ⊂ Rm+1 with the origin in its interior such that, viewed
as a function on the Lebesgue σ-algebra,

(1) µ = λ ◦ (GK ◦ −→ρ K),

where GK is the Gauss (multi-)valued map and −→ρ K : Sm −→ ∂K is the radial map of the convex
body K. Let us recall that for k ∈ ∂K, GK(k) is the set of unit outward normal vectors to ∂K at
k.

When λ is the uniform probability measure on Sm, this problem is known as Aleksandrov's
curvature prescription problem. It has been solved by Aleksandrov himself and was (re)-proved by
various means since then. One of them is based on the theory of optimal mass transport [10, 4];
this is also the method used in this note.

The following condition is known as Aleksandrov's condition:

De�nition 1.1 (Aleksandrov's condition). Two probability measures λ and µ are said to be
Aleksandrov related if for any closed spherically convex subset ω ( Sm:

λ(ω∗) + µ(ω) < 1,

where ω∗ = {x ∈ Sm;∀w ∈ ω 〈x,w〉 ≤ 0}.

Aleksandrov proved that when λ is the uniform probability measure, the problem (1) can be
solved if and only if λ and µ are Aleksandrov related, we refer to his book [1] for more on this.

In 2020, Böröczky et al solved the Gauss image problem for probability measures satisfying
Aleksandrov's condition and such that λ is absolutely continuous with respect to the uniform mea-
sure on Sm [8]. See also [4, Theorem 1.7] for an earlier proof in disguise of this result. Several
noticeable measures in convex geometry satisfy relations like (1) for well-chosen absolutely contin-
uous measures on Sm, this is for instance the case of the dual curvature measures, we refer to [9]
for more on these measures.

In this note we shall solve the Gauss image problem under a weaker assumption than Aleksan-
drov's one.

De�nition 1.2. We say that the probability measures µ and λ satisfy the weak Aleksandrov
condition if there exists α ∈ (0, π/2) such that for any closed set F contained in a closed hemisphere
of Sm the following inequality holds:

(2) µ(F ) ≤ λ(Fπ/2−2α),

where Fπ/2−2α = {n ∈ Sm;∃x ∈ F, 〈n, x〉 > cos(π/2− 2α)}.
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Remark 1.3. For a closed spherically convex subset ω ( Sm, the set ω∗ can also be de�ned by the
equality Sm \ ω∗ = ωπ/2, see for instance [4]. Aleksandrov's condition can thus be rephrased as

µ(ω) < λ(ωπ/2).

Note that Aleksandrov's condition prevents the measure µ from being supported on a closed
hemisphere.

The fact that Aleksandrov's condition implies (2) was proved in [4, Proposition 3.5]. Moreover,
the weak Alexandrov condition is the sharp condition for the Gauss image problem:

Remark 1.4. Let K ⊂ Rm+1 be a compact convex set with the origin in its interior then the
angle between a point in the boundary of K and an outward normal vector to K at that point is
uniformly bounded above by a constant π/2−α < π/2. In other terms, (2) is a necessary condition
for the Gauss image problem (1) to have a solution, see (5) for more details.

On the contrary, Aleksandrov's condition is not necessary when the support of λ is not the
whole sphere [13].

The main result of this note is the following theorem.

Theorem 1.5. Let λ and µ be two probability measures on the unit sphere Sm and assume that λ
is absolutely continuous with respect to the uniform measure and µ is not concentrated on a closed
hemisphere. Then the Gauss image problem for λ and µ admits a solution provided that λ and µ
satisfy the weak Aleksandrov condition.

Assume there are two convex bodies K,L ⊂ Rm+1 with the origin in their interiors and solutions
to (1). Then, the following holds for any Borel set ω

(3) λ((Gk ◦ −→ρ K(ω))∆ (GL ◦ −→ρ L(ω))) = 0,

where A∆B is the symmetric di�erence of the sets A and B.

Remark 1.6. We are currently not interested in submeasures so we don't know whether our proof
can be adapted to this larger framework. Moreover, to our knowledge, the interesting examples
are all measures.

The second statement (3) is a result of uniqueness for multivalued map up to a λ-negligible set.

In late 2022, V. Semenov put on Arxiv a paper in which he solves the Gauss image problem for
λ an absolutely continuous measure and µ a measure with �nite support (which corresponds to
the case where the underlying convex body is a convex polyhedron) [13]. The uniqueness property
stated in Theorem 1.5 is also proved by another method in [14]; our proof is shorter. Our proofs
are not based on the aformentioned articles, instead our approach can be seen as a generalisation
of the method introduced in our earlier work [4].

Building on (3), Semenov proves the following corollary.

Corollary 1.7 ([14]). Under the assumptions of Theorem 1.5, the solution to the Gauss image
problem is uniquely determined up to dilation on each recti�able path connected component of
suppλ.

One could expect the solution of the Gauss image problem to be uniquely determined on each
connected component of suppλ; this question is related to �ne properties of compact Euclidean
sets supporting an absolutely continuous measure and might depend on the dimension of the space.
To our knowledge, this is an open question.

Compared to our earlier work [4], the main new ingredient is a new method to construct a
Kantorovitch potential, a classical object in the theory of optimal mass transport that happens to
de�ne a convex body when the cost function is chosen properly. This construction seems to be the
�rst one where no connectedness of the support of the measure is required (actually what really
matters in the previous works is the fact that all the elements of the support are contained in the
same equivalence class relative to a relation de�ned in terms of the cost function: we remove this
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restriction), compare to [4, 7, 6, 2]. This improved construction is expected to be useful in other
contexts.

In the next section, we recall some classical notions in convex geometry and introduce related
notation. The third part provides a quick introduction to optimal mass transport together with
explanations regarding the connections between the Gauss image problem and optimal mass trans-
port. In Section 4, we introduce some suitable discretisations of the measures involved before
studying combinatorial properties of graphs related to these discretisations. Finally, in the last
part we construct the Kantorovitch potential then prove (3); these properties complete the proof
of our main theorem.

2. Preliminaries

We assume the reader is familiar with basic results in convex geometry, we refer to the textbooks
[11, 12] for a detailed introduction. We denote by C(Sm) the set of continuous functions de�ned on
Sm while we write C+(Sm) for the set of positive continuous functions. To a function ρ ∈ C+(Sm)
corresponds a star-shaped compact set D with respect to the origin. The set D is de�ned by the
property that its boundary ∂D is biLipschitz homeomorphic to Sm through the radial map

−→ρ :=

{
Sm −→ ∂D
x 7−→ ρ(x)x

The function ρ is called the radial function of D, we also use the notation ρD to emphasize the
relation with the set D. Its de�nition can be extented to Rm+1 as x 7−→ 1/|x|ρ(x) where | · | stands
for the Euclidean norm on Rm+1. The set of all such star-shaped compact sets is denoted by E .

The support function of D ∈ E is the function hD : Rm+1 −→ (0,+∞) de�ned by

hD(n) = max{〈x, n〉;x ∈ D}
= max{ρD(x)〈x, n〉;x ∈ Sm}(4)

We recall the de�nition of the polar set D◦ of D as

D◦ = {n ∈ Rm+1;∀x ∈ D, 〈n, x〉 ≤ 1} = {n ∈ Rm+1;∀x ∈ Sm, ρD(x)〈n, x〉 ≤ 1}.
By de�nition of the polar transform D◦◦ := (D◦)◦ always contain D. Moreover, the equality

D◦◦ = D holds if and only if D is a compact convex set that contains the origin in its interior.
In particular, if we let K0 be the set of compact convex sets with the origin 0 ∈ Rm+1 in their
interior, the polar transform is an involution from K0 to itself. We shall simply call convex body
an element of K0. Moreover, the inclusion D◦◦ ⊃ D can be rephrased as ρD◦◦ ≥ ρD and the last
equality holds as functions i� D is a convex body.

For K ∈ K0, let ε > 0 be such that the open Euclidean ball of radius ε centered at the origin is
contained in K. Then, for n, x ∈ Sm such that hK(n) = ρK(x)〈n, x〉, we infer

(5) 〈n, x〉 =
hK(n)

ρK(x)
>

ε

max ρK
=: ε′ > 0

and thus (2) holds for any closed set where α = 1/2(π/2− arccos(ε′)).

Another important connection between the polar transform of D ∈ E and the radial and support
functions is given by the relation

ρD◦ =
1

hD
.

It can be used to rephrase the equality ρD◦◦ = ρD in terms of ρD and hD only:

(6) ρD(x) = ρD◦◦(x) =
1

hD◦
(x) =

1

supn∈Sm
〈x,n〉
hD(n)

= inf
n∈Sm;〈x,n〉>0

{
hD(n)

〈x, n〉

}
.

The expression of ρD in terms of hD is somehow similar without being identical to (4). Oliker's
change of functions [10] allows one to recover a symmetrical and additive expression of the new
functions.
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De�nition 2.1 (Oliker's change of functions). For D ∈ E , set

ϕ(n) = − ln(hD(n)) and ψ(x) = ln(ρD(x)).

Then D is a convex body if and only if

(7)

{
ϕ(n) = min c(n, x)− ψ(x)
ψ(x) = min c(n, x)− ϕ(n),

where the function c : Sm × Sm −→ [0,+∞] is de�ned by c(n, x) = − ln〈n, x〉 if 〈n, x〉 > 0 and
+∞ otherwise.

This follows from simple computations that can be found in [10, 4]. The above relations between
ϕ and ψ are very classical in the theory of optimal mass transport. These links between the Gauss
image problem and optimal mass transport are to be described in the next part.

3. Optimal mass transport

In this part, we brie�y describe the optimal mass transport problem on Sm and introduce related
notation. For more on the subject, we refer to [15, 16]. This problem involves two Lebesgue
probability measures µ, λ on Sm, and a cost function c : Sm × Sm → R+ ∪ {+∞}. We also need to
introduce the set of transport plans Γ(λ, µ), namely the set of probability measures π ∈ P(Sm×Sm)
such that for any Lebesgue set A ⊂ Sm

(8) λ(A) = π(A× Sm) and µ(A) = π(Sm ×A).

Let us recall the cost function c we consider

(9) c(n, x) =

{
− log〈n, x〉 = − log cos d(n, x) if d(n, x) < π/2
+∞ otherwise,

where d(n, x) stands for the spherical distance between n and x.
The cost function c satis�es a standard set of assumptions in the �eld with the noticeable

exception that it is not real-valued. Therefore, some standard results do not apply to c. We gather
the easy-to-prove properties of the cost function in the lemma below.

Lemma 3.1. The cost function c : Sm × Sm −→ R+ ∪ {+∞} de�ned in (9) is a continuous map.
Moreover, restricted to the open set {c < +∞}, the function c is a strictly convex and increasing
smooth function of the spherical distance. Consequently, for (n, x) in any �xed open set Ω such
that Ω ⊂ {c < +∞}, the function (n, x) 7→ c(n, x) is a Lipschitz di�erentiable function on Ω.

The mass transport problem consists in studying

(10) inf
π∈Γ(λ,µ)

ˆ
Sm×Sm

c(n, x) dπ(n, x).

It is customary in the �eld to assume that the mass transport problem is well-posed, namely that
the in�mum in (10) is �nite. The well-posedness of the problem is not an immediate consequence
of the weak Aleksandrov condition and requires to be proved. The scheme of proof of the well-
posedness is identical to that in our paper [4], indeed only the weak Aleksandrov condition is
required in that part. Details are given in the appendix.

Equipped with the topology induced by the weak convergence of probability measures, the set
Γ(λ, µ) is a compact set as a consequence of the Banach-Alaoglu theorem. Therefore by combining
this compactness property together with the continuity of the cost function, we infer the existence
of minimizers in the problem above whenever the in�mum is �nite. These minimizers are called
optimal transport plans.

In order to tackle the Gauss image problem we shall focus our attention on a dual problem to
the mass transport problem introduced by Kantorovitch.
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Let us de�ne A as the set of pairs (ϕ,ψ) of Lipschitz functions de�ned on Sm that satisfy

(11) ϕ(n) + ψ(x) ≤ c(n, x) for all x, n ∈ Sm.

Kantorovitch's variational problem consists in studying

(12) sup
(ϕ,ψ)∈A

{ˆ
Sm
ϕ(n)dλ(n) +

ˆ
Sm
ψ(x)dµ(x)

}
.

It is easy to see that the quantity above is always smaller or equal to (10). Indeed, given
(ϕ,ψ) ∈ A and π ∈ Γ(λ, µ), we have

(13)

ˆ
Sm
ϕ(n) dλ(n)+

ˆ
Sm
ψ(x) dµ(x) =

ˆ
Sm×Sm

(ϕ(n)+ψ(x)) dπ(n, x) ≤
ˆ
Sm×Sm

c(n, x) dπ(n, x).

It can be proved that (10) = (12) whenever the cost function is continuous and nonnegative; this
type of result is called Kantorovitch's duality. However, solution to Kantorovitch's dual problem
may not exist for the cost (9) because this function is not real-valued. We refer to [16] for more
on this.

Our main goal is to prove the existence of a solution to the dual problem under the hypotheses
of Theorem 1.5. In order to explain our method, let us �rst recall the de�nition of the c-transform
of a function f ∈ C(Sm) (the c-transform is well-de�ned whenever f is bounded above):

f c(n) := inf
x∈Sm

c(n, x)− f(x).

Since the cost function is symmetric, the same de�nition applies to functions of the variable n.

Given that the functional

(ϕ,ψ) 7−→
ˆ
Sm
ϕ(n) dλ(n) +

ˆ
Sm
ψ(x) dµ(x)

is nondecreasing with respect to each variable, and the constraint (11), it is not surprising to
seek for maximisers of Kantorovitch's problem among pairs of functions of the form (ϕ,ϕc) where
ϕcc := (ϕc)c coincides with the function ϕ. Such a function ϕ is called a Kantorovitch potential,
besides h(n) := e−ϕ(n) and ρ(x) := eϕ

c(x) satisfy (6) and thus determine a unique convex body.
Given a Kantorovitch potential ϕ, the c-subdi�erential of ϕ, whose de�nition is recalled below,

is a useful set in connection with the mass transport problem:

(14) ∂cϕ := {(n, x) ∈ Sm × Sm;ϕ(n) + ϕc(x) = c(n, x)}.

The c-subdi�erential of a function is a particular instance of a c-cyclical monotone set S ⊂
Sm × Sm whose de�nition is

(15)
∑

1≤i≤k

c(ni+1, xi) ≥
∑

1≤i≤k

c(ni, xi),

where k is any positive integer, (n1, x1), · · · , (nk, xk) ∈ S are arbitrary, and nk+1 = n1.
This condition is equivalent to optimality for mass transport problem involving �nitely supported

measures. More in general, the support of an optimal transport plan in our set-up has to be a
c-cyclically monotone set. We refer to [16, Chapter 5] for the proof of this property and more.

Our main result regarding Kantorovitch's dual problem is

Theorem 3.2. Let λ and µ two probability measures on Sm satisfying the weak Aleksandrov con-
dition (1.2). Assume that λ is absolutely continuous while the support of µ is not contained in a
closed hemisphere. Then, denoting by πo an optimal plan in Γ(λ, µ), there exist a Kantorovitch
potential ϕ such that

(16) suppπo ∩ {c < +∞} ⊂ ∂cϕ.
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An easy consequence of this result -if we discard for now the question of the regularity of ϕ and
ϕc- is that equality holds in (13):

ˆ
Sm
ϕ(n) dλ(n) +

ˆ
Sm
ϕc(x) dµ(x) =

ˆ
Sm×Sm

(ϕ(n) + ϕc(x)) dπo(n, x)
(16)
=

ˆ
Sm×Sm

c(n, x) dπo(n, x).

The above equality forces the measure µ to be the Gauss image measure of the underlying
convex body K ∈ K0 determined by the pair (ϕ,ϕc). Indeed, using Oliker's change of functions
(ϕ,ϕc)↔ (ρK , hK), one infer the equality

∂cϕ = {(n, x);hK(n) = ρK(x)〈n, x〉} = {(n, x);n ∈ GK ◦ −→ρ K(x)}.
For the sake of completeness, we reproduce the short proof of the fact that µ is the Gauss image

of K relative to λ [4].
For any Borel set U ⊂ Sm, it holds

µ(U) = πo(Sm × U)

= πo(Sm × U ∩ {(n, x) ∈ (Sm)2;ϕ(n) + ϕc(x) = c(n, x)})
= πo(Sm × U ∩ {(n, x) ∈ (Sm)2;n ∈ GK(−→ρ K(x))})
= πo(GK ◦ −→ρ K(U)× U ∩ {(n, x);n ∈ GK(−→ρ K(x))})
= πo(GK ◦ −→ρ K(U)× Sm ∩ {(n, x);n ∈ GK(−→ρ K(x))})
= πo(GK ◦ −→ρ K(U)× Sm)

= λ(GK ◦ −→ρ K(U))

where to get the equality in line 6 we use:

GK ◦ −→ρ K(U)× U c ∩ {(n, x) ∈ (Sm)2;n ∈ GK(−→ρ K(x)))} ⊂
{(n, x) ∈ (Sm)2;∃x′ 6= x, n ∈ GK(−→ρ K(x)) ∩ GK(−→ρ K(x′))}

which yields

πo(GK ◦ −→ρ K(U)× U c ∩ {(n, x) ∈ (Sm)2;n ∈ GK(−→ρ K(x)))}) ≤
λ({n ∈ Sm;∃x′ 6= x, n ∈ GK(−→ρ K(x)) ∩ GK(−→ρ K(x′))}) = 0,

where the last equality hods since λ is absolutely continuous with respect to the uniform measure
σ and the corresponding result for σ is classical, see for instance [3, Lemma 5.2].

To sumarize, we have seen that the �rst statement in Theorem 1.5 is a rather straightforward
consequence of Theorem 3.2. In the rest of the paper, we shall �rst prove that the mass trans-
port problem is well-posed then buil a Kantorovitch potential as stated in Theorem 3.2. Our
approach consists in discretising several probability measures at a scale compatible with the weak
Aleksandrov condition.

In the next part we introduce suitable discretisations of the involved measures based on a
partition of the sphere into Borel sets of small diameters. We then use this construction �rst to
single out a transport plan with �nite cost thus proving the mass transport problem is well-posed.
Second, we study a graph induced by the discretised measures before proving Theorem 3.2 by
constructing a suitable Kantorovitch potential in Section 5. Our approach is a generalisation of
methods introduced in [7, 6]. Finally, we prove the second statement in Theorem 1.5.

4. Discretisation of the measures

We �rst recall a basic covering lemma and then draw some consequences of this construction

Lemma 4.1. Let θ be a �nite Borel measure on the unit sphere Sm endowed with the spherical
distance d. For any κ > 0, there exists a �nite partition (Pi)1≤i≤K of Sm (depending on κ) such

that for all i, the interior
◦
P i of Pi is nonempty, diam(Pi) < κ and θ(∂Pi) = 0. If we also assume
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that θ is absolutely continuous with respect to the uniform measure on Sm, we can further require
θ(Pi) to be a rational number.

A very closed result is proved in the appendix of [4]. In the same paper, and building on the
above covering lemma, it is shown that if the uniform probability measure and µ are Aleksandrov
related then there exists a plan πα ∈ Γ(λ, µ) andM > 0 such that c ≤M < +∞ everywhere on the
support of πα. As noticed in [4, Remark 4.9], the same proof applies to λ and µ as well; moreover
the proof precisely requires the weak Aleksandrov condition to hold. We refer to the appendix for
a proof of the above lemma and the following theorem.

Theorem 4.2. Let λ and µ be two probability measures on Sm satisfying the weak Aleksandrov
condition (2). Assume that λ is absolutely continuous while the support of µ is not contained in a
closed hemisphere. Then there exists a transport plan πα ∈ Γ(λ, µ) such that

suppπα ⊂ {(n, x) ∈ Sm × Sm; 〈n, x〉 ≥ cos(π/2− α)}.

In particular, ˆ
c dπα < +∞.

Corollary 4.3. Under the above assumptions the optimal mass transport problem for the measures
λ and µ relative to the cost function c has a solution. Let us denote by πo an optimal transport
plan.

Proof. This is a very standard consequence of the continuity of the cost function and the compact-
ness of Γ(λ, µ), see for instance [15] for a proof. �

With those tools at our disposal, we can now de�ne a graph involving the transport plans πα

and πo.

Coverings of suppµ and supp ν

According to Lemma 4.1 applied to suppµ and supp ν, there exist two �nite collections of Borel
subsets of Sm with nonempty interiors (Pi)1≤i≤l and (Qj)1≤j≤p such that

(17) λ(Pi) > 0, µ(Qj) > 0, λ(∂Pi) = µ(∂Qj) = 0, Diam (Pi),Diam (Qj) < α/8,

for all i ∈ {1, · · · , l}, j ∈ {1, · · · , p}.
We also �x

(18) zi a point in
◦
Pi ∩ suppµ and wj a point in

◦
Qj ∩ supp ν.

We then introduce the discretised measures λd and µd relative to the above covers as follows:

λd :=
∑

1≤i≤l

λ(Pi) δzi and µ
d :=

∑
1≤j≤p

µ(Qj) δwj
.

We proceed similarly for transport plans. We de�ne the following discrete plans

πdo :=
∑
i,j

πo(Pi ×Qj) δ(zi,wj) and πα,d :=
∑
i,j

πα(Pi ×Qj) δ(zi,wj).

Graph structure on the product covering

Let us now de�ne the following �nite graph

G := {(Pi, Qj);πo(Pi ×Qj) > 0} ⊂ {(Pi, Qj); 1 ≤ i ≤ l, 1 ≤ j ≤ p}.
For simplicity, we shall sometimes write (i, j) ∈ G instead of (Pi, Qj) ∈ G.



8 JÉRÔME BERTRAND

The graph G is equipped with the following set of primal oriented edges

E = {{(i, j), (u, v)};πα(Pu ×Qj) > 0}.
We call length of a path in (G,E) the number of edges it uses.

Remark 4.4. The graphG has many edges since, given {(i, j), (u, v)} ∈ E, we get that {(o, j), (u, s)} ∈
E for any o, s, such that (o, j) ∈ G and (u, s) ∈ G.

We are interested in the cycles of G, namely the �nite collections (i1, j1), · · · , (iq, jq) ∈ G where
q is an arbitray positive integer, and such that {{(is, js), (is+1, js+1)}} ∈ E for all s ∈ {1, · · · , q}
(where (i1, j1) = (iq+1, jq+1)).

Lemma 4.5. Each edge e ∈ E belongs to a least one cycle (i1, j1), · · · , (iq, jq) ∈ G, say e =
{(i1, j1), (i2, j2)}. Moreover, one can assume that the vertices of the cycle are all distinct.

Remark 4.6. Since any vertex of G belongs to an edge, the above lemma also implies that any
vertex of G belongs to a cycle.

Proof. By de�nition of an edge, πα(Pi2 ×Qj1) > 0 and πo(Pi2 ×Qj2) > 0. We have the following
alternative, either πα((Rn \ Pi1) × Qj2) = 0 (which implies that (i1, j1), (i2, j2) is a cycle) or
we can repeat the argument with {(i2, j2), (i3, j3)} 6= e since there exists Pi3 6= Pi1 such that
πα(Pi3 ×Qj2) > 0 combined with the fact that πo ∈ Γ(µ, ν) implies the existence of Qj3 such that
(Pi3 , Qj3) ∈ G. In each case, after �nitely many steps we obtain a cycle; however we cannot infer
that e belongs to it. Thus, let us further study the graph (G,E). Let (i1, j1), · · · , (ik, jk) ∈ G be
an arbitrary cycle made of distinct points and

m := min

(
min

1≤u≤k
{πo(Piu ×Qju)} , min

1≤u≤k
{πα(Piu+1 ×Qju)}

)
> 0.

Consider πd1 = πdo −
∑k
u=1mδ(ziu ,wju ) and π

α,d
1 = πα,d −

∑k
u=1mδ(ziu+1

,wju ), note that π
d
1 and

πα,d1 have the same marginals. Moreover, by de�nition of m,

] suppπd1 + ] suppπα,d1 ≤ ] suppπdo + ] suppπα,d − 1

(where ] stands for the cardinal of a set). Now de�ne the reduced graph G1 similarly to what we

did for G but using πd1 and πα,d1 instead of πdo and πα,d. By construction, G1 ⊂ G, E1 ⊂ E, and,
as explained above, we have ]G1 + ]E1 ≤ ]G+ ]E− 1. Since ]G+ ]E ≤ lp+ (lp)2, after repeating
the construction at most lp + (lp)2 times, we get an empty reduced graph. This precisely means
that any edge of graph G belongs to a cycle.

�

We call bunch of cycles related to (P0, Q0), and denote by B(P0,Q0), the set of vertices of G
sharing a cycle with (P0, Q0) ∈ G, namely the set of vertices (P,Q) such that there exist a cycle
Cy (depending on (P,Q)) with (P,Q) and (P0, Q0) belong to Cy. The set of bunches of cycles
induces a partition of the graph G, and, in general, more than one bunch of cycles is needed to
cover G.

Being in the same bunch of cycles induces an equivalence relation on G. In the next de�nition,
we enlarge the set of edges to be able to connect more vertices at the price of breaking the symmetry
of the previous relation.

We now equipped G with an enlarged set of oriented edges E′ de�ned by

(19) E′ = {{(i, j), (u, v)}; d(zu, wj) < π/2− α/4}.

Remark 4.7. The fact that suppπα is made of pairs of points at distance at most π/2−α together
with the upper bound on the diameter of the (Pi)'s and (Q)j's readily imply the inclusion: E ⊂ E′.

Chains between points and connected subgraph

Let us start with a weak notion of connectedness.
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De�nition 4.8 (κ-chainable space). Let κ > 0 and (X, d) be a metric space. An ordered set
{x1, · · · , xp} in X such that d(xi, xi+1) < κ for any i = 1, · · · , p − 1 is said to be a κ-chain (of
length p) from x1 to xp. The relation x ∼

κ
y i� there exists a �nite chain from x to y induces an

equivalence relation on X. By analogy, we call κ-chain connected component an equivalence class
of ∼

κ
.

It is an easy exercise to show that a connected space is κ-connected for any κ > 0. For us, the
main adavantage of this notion is given by the following simple lemma.

Lemma 4.9. Let (X, d) be a compact metric space and κ > 0. Then X can be decomposed into
�nitely many κ-chain connected components.

Proof. Each κ-chain connected component is both an open and a closed subset of X. Thus, the
compactness of X implies the existence of a �nite subcover.

�

In what follows, we set

(20) κ = α/4.

In the rest of this part, we let C be a κ-chain connected component of supp ν. We also de�ne
the subgraph

(21) GC := {(P,Q) ∈ G;Q ∩ C 6= ∅}

equipped with the set of edges coming from E′.

Remark 4.10. Of course, there are a priori edges in E′ connecting points not in GC . In the rest of
the paper when we consider a path in E′ connecting two points in GC we do not intend to restrict
to edges in E′ connecting points in GC , on the contrary any edge in E′ can be part of such a path.

Our aim is now to prove

Proposition 4.11. The graph (GC ,E
′) is connected, meaning that any two points of GC can be

connected by a path in E′. We can further assume the path length is at most ]G.

Proof. Given (P,Q), (P̃ , Q̃) ∈ G such that Q∩C 6= ∅ and Q̃∩C 6= ∅ let us show there exists a path

in E′ from (P,Q) to P̃ , Q̃). We �x x ∈ Q ∩C and x̃ ∈ Q̃ ∩C. By de�nition of C, there exists a κ-
chain {x1, · · · , xk} from x = x1 to x̃ = xk. Since the chain is made of points in supp ν, there exists
maps σ (resp. θ) from {1, · · · , k} to {1, · · · , p} (resp. {1, · · · , l}) such that xi ∈ Qσ(i). Moreover,
there exists Pθ(i) such that (Pθ(i), Qσ(i)) ∈ GC (since xi ∈ C by construction) for i = 2, · · · , k − 1.

Thanks to Lemma 4.5, there exists a cycle c made of edges in E going through (P̃ , Q̃). Let us

denote by {(P̃ , Q̃), (P̂ , Q̂)} the edge issuing from (P̃ , Q̃) in this cycle. We denote by (ẑ, ŵ) the pair

of representative points of (P̂ , Q̂). The triangle inequality then gives

d(ẑ, wσ(p−1)) ≤ d(ẑ, a) + d(a, b) + d(b, x̃) + d(x̃, xp−1) + d(xp−1, wσ(p−1))

< α/8 + π/2− α+ α/8 + α/4 + α/8 < π/2− α/4,

where (a, b) ∈ suppπα ∩ (P̂ × Q̃). The previous estimate precisely means that

{(Pθ(p−1), Qσ(p−1)), (P̂ , Q̂)} ∈ E′.

Therefore, (Pθ(p−1), Qσ(p−1)) is connected to (P̃ , Q̃) by following part of the cyle c introduced
above. The thesis then follows by a �nite induction. The last property follows from the fact that
without loss of generality one can assume the path contains no cycle.

�
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5. Building a Kantorovitch potential

In this part, building on the results from Section 4, we prove the existence of the Kantorovitch po-
tential needed to solve the Gauss image problem. Our proof is based on a Rockafellar-Ruschëndorf
formula. Let us recall the result we shall prove:

Theorem 5.1. Let λ and µ two probability measures on Sm satisfying the weak Aleksandrov con-
dition (1.2) and assume that λ is absolutely continuous while the support of µ is not contained in
a closed hemisphere. Then, denoting by πo an optimal plan in Γ(λ, µ), there exist a Kantorovitch
potential ϕ such that

suppπo ∩ {c < +∞} ⊂ ∂cϕ.

We �rst prove auxiliary results. As recalled above, the support of any optimal plan relative to
c is c-cyclically monotone (15). The set

Γ := supp (πo) ∩ {c < +∞}

is then c-cyclically monotone as a subset of the support of πo.
According to the results in Section 3, ˆ

c dπo < +∞

whenever πo ∈ Γopt(σ, µ). Therefore, πo({c < +∞}) = 1 and Γ is a set of full πo-measure.

5.1. κ-chains and c-path boundedness.

De�nition 5.2. 1 A pair (n, x) ∈ Γ is said to be c-path connected to (ñ, x̃) ∈ Γ if there exists
an ordered set γ := {(n1, x1) · · · , (nk, xk)} in Γ, called a c-path, such that d(ni+1, xi) < π/2 for
i = 1, · · · k − 1, (n, x) = (n1, x1) and (ñ, x̃) = (nk, xk). The cost c(γ) of γ is said to be �nite if

c(γ) :=

k−1∑
i=1

c(ni+1, xi)− c(ni, xi) ∈ R.

When c(γ) ∈ R we call γ a bounded c-path from (n, x) to (ñ, x̃).

Note that the cost of an arbitrary c-path (in Γ) is in R∪{+∞}. In the next proposition, building
upon our study of the graph (G,E′) and its subgraphs, we get properties on c-path boundedness.
Recall that κ = α/4.

Proposition 5.3. Let C be a κ-chain connected component of supp ν. Then for any (n, x), (ñ, x̃) ∈
Γ such that x, x̃ ∈ C, the pair (n, x) is c-path connected to (ñ, x̃). More precisely, there exists a
positive constant C(α) such that for any (n, x), (ñ, x̃) as above there exists a c-path γ from (n, x)
to (ñ, x̃) whose cost satis�es

c(γ) ≤ C(α).

Remark 5.4. The above proposition is a generalisation of [6, Lemma 5.5].

Proof. We set (P,Q) ∈ G and (P̃ , Q̃) ∈ G such that (n, x) ∈ P ×Q and (ñ, x̃) ∈ P̃ × Q̃. Accord-
ing to Proposition 4.11, we infer the existence of an ordered set {(Pi1 , Qj1), · · · , (Pik , Qjk)} ∈ G

connecting (P,Q) to (P̃ , Q̃) through edges of E′. We denote by (zis , wjs) for s = 1, · · · , k the
associated pairs of representative points. We claim that the path

γ = {(n, x), (zi2 , wj2), · · · , (zik−1
, wjk−1

), (ñ, x̃)}

has �nite cost. Indeed, by de�nition of E′, we have d(zis+1
, wjs) < π/2− α/4 while

d(zi2 , x) ≤ d(zi2 , wj1) + d(wj1 , x) < π/2− α/4 + α/8 = π/2− α/8,

1This de�nition di�ers from the one in [2]
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and the same inequality holds for d(ñ, wjk−1
). As a consequence, we get

(22) c(γ) ≤ c(zi2 , x) +

k−2∑
s=2

c(zis+1
, wjs) + c(ñ, wjk−1

) ≤ ]G · C(π/2− α/8) < +∞,

where C(β) = − ln(cosβ), and the proof is complete. �

The next step consists in building a well-behaved function ψ whose c-transform is the potential
ϕ we need to prove our main result. For that purpose, we introduce some extra notation. In what
follows, we denote by px : Sm × Sm −→ Sm the canonical projection on the x-variable. For each
κ-chain connected component Ci of supp ν such that Ci ∩ px(Γ) 6= ∅, we �x a pair (n(i), x(i)) ∈ Γ
such that x(i) ∈ Ci. Using these κ-chain connected components, we can decompose px(Γ) as follows

(23) px(Γ) = ti∈ICi ∩ px(Γ).

Recall that I is a �nite set. With a slight abuse of notation, we shal call Ci ∩ px(Γ) a κ-chain
connected component of px(Γ).

The de�nition of ψ depends on the κ-chain connected components of px(Γ). Namely, ψ ≡ −∞
out of px(Γ) while the de�nition of ψ depends on the decomposition (23). We �rst de�ne the
function ψCi

on Ci ∩ px(Γ) by the formula

(24) ψCi
(x) := sup

n,γ;(n,x)∈Γ

−c(γ) + c(n, x),

where γ is a (bounded) c-path from (n(i), x(i)) to (n, x) ∈ Γ. We have seen in the previous
proposition that a bounded c-path exists yet the function ψCi

could be in�nite at some points.
However we have ψCi

> −∞ on Ci ∩ px(Γ). In the next lemma, we prove that ψCi
is bounded

from above.

Lemma 5.5. There exists a positive constant C = C(α) such that

ψCi ≤ C(α)

on the κ-chain connected component Ci of supp ν. Moreover, ψCi
is real-valued on Ci ∩ px(Γ).

Remark 5.6. The constant C(α) does not depend on Ci.

Proof. Let x ∈ Ci ∩ px(Γ) and n such that (n, x) ∈ Γ. According to Proposition 5.3, we can �x a
bounded c path γx from (n, x) to the representative pair (n(i), x(i)) of Ci. Note that by de�nition
of the cost, c(γx) does not depend on n. Let γ be an arbitrary c-path from (n(i), x(i)) to (n, x).
We then estimate

−c(γ)− c(γx) =

k∑
r=1

c(nr, xr)− c(nr+1, xr) ≤ 0,

where there exists s between 1 and k such that γ = {(n1, x1), · · · , (ns, xs)} and
γx = {(ns, xs), · · · , (nk+1, xk+1)}. By concatenating the two paths, we get a cycle (in the sense of
optimal mass transport); the c-cyclical monotonicity of Γ (see (15)) then implies the last inequality.

Using again that (ns, xs) = (n, x) we infer

−c(γ) + c(n, x) ≤ c(ns+1, x) +

k∑
r=s+1

c(nr+1, xr)− c(nr, xr) ≤
k∑
r=s

c(ni+1, xi) ≤ C(α) < +∞,

thanks to (22). The second statement has been explained prior to the statement. �
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In order to de�ne ψ, we �rst need to connect, when possible, distinct κ-chain connected com-
ponents. Given i 6= j ∈ I, let us �x γij a bounded c-path from the representative pair (n(i), x(i))

to (n(j), x(j)) and denote by cij := c(γij) the associated cost. When such a path does not exist,
we set cij := +∞; by convention we de�ne cii = 0 for any i ∈ I. We can now de�ne the function
ψ as follows:

(25) ψ(x) =

{
−∞ if x /∈ px(Γ)
maxi∈I − cij + ψCj (x) if x ∈ Cj ∩ px(Γ)

By de�nition of the cij 's and according to Lemma 5.5, there exists a positive constant C = C(α)
such that

ψ > −∞ on px(Γ) and ψ ≤ C(α) < +∞.
Recall that by assumption, the measure µ gives mass to any open hemisphere B(x, π/2) thus

px(Γ) ∩B(x, π/2) 6= ∅ for any x ∈ Sm (otherwise suppµ = px(Γ) ⊂ B(−x, π/2) hence a contradic-
tion). Therefore one can invoke the following proposition from [5, Proposition B.3]:

Proposition 5.7. Let ψ : Sm −→ R ∪ {−∞} be a function bounded from above such that

∀u ∈ Sm, B(u, π/2) ∩ {ψ > −∞} 6= ∅.
Then ψc is real-valued and Lipschitz regular on Sm, moreover its Lipschitz constant only depends
on upper bounds on ψ and ψc.

We �nally set

(26) ϕ := ψc.

Thus ϕ is real-valued and Lipschitz regular. Consequently ϕc and ϕcc share the same properties.
Finally, it is a classical result (see for instance [16]) that ϕcc = ψccc = ψc = ϕ. In other terms, the
function ϕ is a Kantorovitch potential. In order to complete the proof of Theorem 5.1, we are left
with proving the following result.

Lemma 5.8. Under the assumptions of Theorem 5.1, the following inequality holds

Γ ⊂ ∂cϕ.

Proof. Let (n, x) ∈ Γ. By de�nition of the c-transform, we are done if we can prove

c(n, x)− ϕ(n) ≤ c(n, x)− ϕ(n),

for all n ∈ Sm. This inequality is equivalent to

(27) ϕ(n) ≤ ϕ(n) + c(n, x)− c(n, x),

for all n ∈ Sm. For convenience we set S := {(n(i), x(i)), i ∈ I} the collection of representative
pairs of the κ-chain connected components

(
Ci ∩ px(Γ)

)
i∈I .

By combining

ϕ(n) = inf
x∈Sm

c(n, x)− ψ(x)

together with the expression for x ∈ Cj ∩ px(Γ) (we can discard the other points since ϕ is real-
valued according to the previous proposition):

ψ(x) = sup
i∈I,k∈N

sup
(ns,xs)∈Γk, (n0,x0)=(n(i),x(i)),xk=x

−cij +

(
k−1∑
s=0

c(ns, xs)− c(ns+1, xs)

)
+ c(nk, x),

where j is de�ned by x ∈ Cj , and there is no second term in the right hand side when k = 0.

Recall that cii = 0 and cij = +∞ if there is no bounded c-path from (n(i), x(i)) to (n(j), x(j)).
Therefore, one can discard these i's in the above de�nition since for i = j and x ∈ Cj ∩ px(Γ),
ψCj (x) ∈ R.
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Consequently, we can write the function ϕ in a similar fashion as ψ, namely

ϕ(n) = inf
i∈I,k∈N

inf
(ns,xs)∈Γk, (n0,x0)=(n(i),x(i)),nk+1=n

cij +

k∑
s=0

c(ns+1, xs)− c(ns, xs).

For (n0, x0) for which cij is �nite (and i 6= j), the expression in the RHS above can be written
as c(γ̃) where γ̃ is the concatenation of the c-path γij together with the c-path from (n0, x0) to
(n, x) described in the formula. Consequently, for n = n if we further add to γ̃ above the c-path
{(n, x), (n, x)}, one easily get the expected formula (27) by considering a minimizing sequence of
c-paths relative to ϕ(n). �

5.2. On a �rst order uniqueness of the solution. In this part, we prove:

Theorem 5.9. Let λ and µ two probability measures on Sm, and assume that λ is absolutely
continuous. Assume there are two convex bodies K,L ∈ K0 solutions to (1). Then, the maps
Gk ◦ −→ρ K and GL ◦ −→ρ L coincide λ-a.e. as multivalued maps, namely for any Borel set ω

λ((Gk ◦ −→ρ K(ω))∆ (GL ◦ −→ρ L(ω))) = 0.

Remark 5.10. Recall that for a convex in K0, the fact that the origin belongs to the interior of the
convex body prevents the angle between a direction x and a normal vector n ∈ G◦−→ρ (x) from being
too close to π/2. In other terms, the measures λ and µ must satisfy the weak Aleksandrov condition
for a su�ciently small α > 0. Consequently, as proved in Theorem 4.2, the mass transport problem
relative to µ, λ and the cost c is well-posed. We keep the notation πo for the optimal plan.

Proof. Observe that a solution (ρ, h) ∈ {(ρK , hK), (ρL, hL)} to the Gauss image problem becomes,
after applying Oliker's change of functions, a solution to the Kantorovitch problem; we denote by
(ϕK , ψK) and (ϕL, ψL) these solutions. Indeed, given a convex body K ∈ K0, up to a Lebesgue
negligible set NK , for all n ∈ Sm \ NK there exists a unique x ∈ Sm such that n ∈ GK(−→ρ K(x)).
Besides if we denote by TK(n) such a x then it is known that TK is continuous on Sm \NK [11].
Thus for any Borel set ω ⊂ Sm,

µ(ω) = λ(GK ◦ −→ρ K(ω)) = λ(T−1
K (ω)),

in other terms the pushforward of λ through TK is µ. This property is denoted by TK]λ = µ.
Reasoning as in the proof of Theorem 3.2, we get for (ϕK , ψK):

ˆ
Sm×Sm

c(n, x) d(Id, TK)]λ(n) =

ˆ
Sm
c(n, TK(n)) dλ(n)

=

ˆ
Sm

(
ϕK(n) + ψK(TK(n))

)
dλ(n)

=

ˆ
Sm
ϕK(n) dλ(n) +

ˆ
K

ψK(TK(n)) dλ(n)

=

ˆ
Sm
ϕK(n) dλ(n) +

ˆ
K

ψK(x) dµ(x).

Therefore (ϕK , ψK) is a solution to the dual problem (and (Id, TK)]λ is an optimal plan). The
same properties hold for the convex body L and the corresponding objects.

Consequently,

(28) Γ = suppπo ∩ {c < +∞} ⊂ ∂cϕK ∩ ∂cϕL.

Recall that πo(Γ) = 1 since the mass transport problem is well-posed. Besides, for ω a Borel
set in Sm, observe that

∂cϕK ∩ (Sm × ω) = {(n, x);n ∈ GK ◦ −→ρ K(x), x ∈ ω},
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thus

pn(∂cϕK ∩ (Sm × ω)) = GK ◦ −→ρ K(ω)

and the same property holds for L instead of K. Now, according to (28)

πo(∂cϕK ∩ ∂cϕL ∩ (Sm × ω)) = πo(Sm × ω) = µ(ω).

Finally

λ(GK ◦ −→ρ K(ω) ∩ GL ◦ −→ρ L(ω)) ≥ π0(p−1
n (pn(∂cϕK ∩ ∂cϕL ∩ (Sm × ω)))) ≥ µ(ω).

Since K and L are solutions to the Gauss image problem, equality actually holds in the above
inequality:

λ(GK ◦ −→ρ K(ω) ∩ GL ◦ −→ρ L(ω)) = λ(GK ◦ −→ρ K(ω)) = λ(GL ◦ −→ρ L(ω))

and the result is proved.
�

Appendix

In this appendix, we �rst prove the following result which is a minor adaptation of the appendix
of [4].

Lemma 5.11. Let θ be a Borel probability measure on the unit sphere Sm endowed with the
spherical distance d. For any κ > 0, there exists a �nite partition (Pi)1≤i≤K of Sm (depending on

κ) such that for all i, the interior
◦
P i of Pi is nonempty, diam(Pi) < κ and θ(∂Pi) = 0. If we also

assume that θ is absolutely continuous with respect to the uniform measure on Sm, we can further
require θ(Pi) to be a rational number.

Proof. The proof is by induction on the dimension m. Let us recall the expression of the spherical
distance d in spherical coordinates say (t, u) where t ∈ [0, π] and u ∈ Sm−1:

(29) cos d((t, u), (s, v)) = cos s cos t+ sin s sin t cos d(u, v),

where d(u, v) is the spherical distance between u and v in Sm−1. We also set pt (resp pu) the
projections associated to these coordinates on (0, π)× Sm−1.

For m = 1, �x a number α1 > 0. Then, partition S1 into �nitely many left-open, right-closed
segments (Ij)1≤j≤K1

whose length l(Ij) satis�es l(Ij) < α1; up to slightly moving the intervals
-since the condition on the diameter is open- we can further require that θ(∂Ij) = 0 since θ has
at most countably many atoms. When θ is absolutely continuous, again one can slightly move the
boundary of the intervals to make sure that θ(Ij) ∈ Q for j = 1, · · · ,K1 − 1 while preserving the
other properties; θ(IK1

) ∈ Q follows from θ(S1) = 1.
For m = 2, �x a point N ∈ S2 and α2 > 0. Consider a partition (Ci)1≤i≤K2

where C1 is
the closed spherical cap centered at N with radius R1, Ci = {z ∈ S2;Ri < d(N, z) ≤ Ri+1} for
i ∈ {2, · · · ,K2 − 1} and CK2 is the open ball with radius π − RK2 and center −N . We require
that the (Ri)'s satisfy:

α2/2 < R1 < α2, α2/2 < Ri −Ri−1 < α2, π −RK2
< α2.

Since the atoms of the measures (pt)](θ) correspond to the radius r ∈ (0, π) for which the sphere
S(N, r) := {u ∈ Sm; d(u,N) = r} has positive θ-mass, we can further choose the radii Ri's so
that θ(S(N,Ri)) = 0 for i ∈ {1, · · · ,K2}. Similarly, we can assume that θ(Ci) ∈ Q when θ is
absolutely continuous. Now, applying the case m = 1 to each measure ((pu)](θ Ci))1≤i≤K2

), we
get a partition (Ps)1≤s≤K of S2 (namely whose elements are of the form (Ci∩ (pu)−1(Iij))i,j , where

(Iij)j is the partition of S1 corresponding to (pu)](θ Ci)). The (Ps)'s have nonempty interiors
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by construction. In addition to that, we recall that the measures ((pu)](θ Ci))1≤i≤K2
) on S1 are

absolutely continuous with respect to the uniform measure on S1 whenever θ is so. Using that

θ(Ps) =

(ˆ Ri+1

Ri

sin r dr

)
· (pu)](θ Ci)(I

i
j),

when Ps = Ci ∩ (pu)−1(Iij); we can further assume θ(Ps) ∈ Q whenever θ is a.c.. Finally, the
expression of the spherical distance (29) implies that the diameter of any Ps is smaller than κ
provided α1 and α2 are chosen su�ciently small.

The higher dimensional case easily follows from the arguments used for m = 2. �

Building on the previous lemma, we can prove the mass transport problem (10) is well-posed.
The proof is a straightforward adaptation of [4, Proof of Theorem 4.1].

Theorem 5.12. Let λ and µ be two probability measures on Sm satisfying the assumptions of
Theorem 5.1. There exists a plan πα ∈ Γ(λ, µ) such that

suppπα ⊂ {(n, x) ∈ Sm × Sm; d(n, x) ≤ π/2− α}.

Proof. According to the weak Alexsandrov condition, there exists a number α > 0 such that

(30) µ(F ) ≤ λ(Fπ/2−2α),

for any closed set F contained in a closed hemisphere (2).
The �rst step of the proof is to show that we can approximate µ by a �nitely supported measure

that still satis�es the above condition up to sligthly decreasing α. To this end, we �rst approximate
µ by (µ ∗ ρε)ε<α/4, ρε being a family of standard radial molli�ers on Sm. We �x such an ε and
set µ̂ = µ ∗ ρε; by de�nition, µ̂ is absolutely continuous with respect to the uniform measure and
satis�es (30) with 7α

4 instead of 2α. The next step is to use a �t partition for µ̂ as in Lemma 5.11:
there exists a �nite partition (Ui)i∈{1,···N} of Sm made of Borel sets with nonempty interiors such
that

(31) diam(Ui) < α/4 and µ̂(Ui) ∈ Q.

For each Ui, choose xi ∈ Ui and set

µe =

N∑
i=1

µ̂(Ui)δxi ,

By assumption on the diameter of Ui, µe satis�es for all closed set F contained in a closed
hemisphere:

(32) µe(F ) ≤ λ
(
∪x∈FB

(
x, π/2− 3α

2

))
and the proof of the �rst step is complete. According to (31), µe can be rewritten (up to repeating
some the x̃i's)

µe =
1

M

M∑
i=1

δx̃i

with M ∈ N \ {0} and {x̃1, · · · , x̃M} = {x1, · · · , xN}. .
The next step is to show the existence of πe ∈ Γ(λ, µe) such thatˆ

Sm×Sm
c(n, x) dπe(n, x) ≤ − ln (sin (α)) .

To this aim, we now apply Lemma 5.11 to the measure λ which is absolutely continuous with
respect to the uniform measure. The same argument as the one applied to µ̂ leads to the existence
of M ′ and a partition (Vs)

r
s=1 of Sm which satis�es (31). We �rst decompose λ as follows
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λ =

r∑
s=1

λ(Vs)λs,

where λs = 1
λ(Vs)λ Vs. Using that λ(Vs) ∈ Q we can proceed as we did for µe and, repeating

some of the λs's if necessary, rewrite this equality as

λ =

M ′∑
j=1

1

M ′
λ̃j ,

where λ̃j = 1

λ(Ṽj)
λ Ṽj and {Ṽ1, · · · , ṼM ′} = {V1, · · · , Vr}. Note that the above equlity implies

for any s = 1, · · · , r

λ(Vs) =
]{j; Ṽj = Vs}

M ′
.

Now, up to replacing M and M ′ by the product MM ′ and repeating the (x̃i)'s and the (Ṽj)'s, we

can assume that M = M ′. Thus we have a collection of sets (Ṽi)
M
i=1 and {x̃i}Mi=1 of Sm such that

Diam (Ṽi) ≤ α
4 and λ(Vs) =

]{j;Ṽj=Vs}
M for s = 1, · · · , r. Finally, we claim that the set-valued map

F : {1, · · · ,M} −→
{
Ṽj , j ∈ {1, · · · ,M}

}
i 7−→ {Ṽj ; Ṽj ⊂ B(x̃i, π/2− α)}

satis�es the assumptions of the Marriage lemma. Indeed, consider I a subset of {1, · · · ,M}.
Thanks to (32), we have

]I

M
≤ µe({x̃i, i ∈ I}) ≤ λ

(
∪i∈I B

(
x̃i, π/2−

3α

2

))
.

Now, by assumption on the Vs's, we get⋃
i∈I

B
(
x̃i, π/2−

3α

2

)
⊂

⋃
Vs;Vs⊂B(x̃i,π/2−α)

Vs.

Therefore

µe({x̃i, i ∈ I}) ≤
∑

Vs⊂B(x̃i,π/2−α)

λ(Vs) =
∑

Vs⊂B(x̃i,π/2−α)

]{j; Ṽj = Vs}
M

=
]{j; Ṽj ∈ F (I)}

M
,

and the assumptions of the Marriage lemma are satis�ed. Consequently, there exists a one-to-one

map f : {1, · · · ,M} −→ {Ṽi; i ∈ {1, · · · ,M}} such that for all i, f(i) ⊂ B(x̃i, π/2− α). This fact
clearly entails that the plan which maps the mass 1/M located at x̃i uniformly on f(i) is a plan
πe in Γ(λ, µe) such that

(33) πe
({

(n, x) ∈ (Sm)2; d(n, x) ≤ π/2− α
})

= 1.

Note that the bound does not depend on M nor on ε. Therefore, by letting ε go to 0, we can
construct by the same method a sequence of empirical measures which converges to µ, all of whose
elements satisfy (33). Then using the Banach-Alaoglu theorem, we can extract a subsequence of
plans which converges to an element of Γ(λ, µ) that satis�es (33). �
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