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Abstract

The purpose of this paper is to show that in a finite dimensional
metric space with Alexandrov’s curvature bounded below, Monge’s
transport problem for the quadratic cost admits a unique solution.

1 Introduction

In this paper, we provide a solution to the Monge-Kantorovich problem
in Alexandrov space when the cost function is the square of the metric.
We begin by explaining what Monge’s problem is, and briefly describ-
ing Alexandrov spaces. The mass transportation problem, raised by
Monge in 1781 [14], is to move one distribution of mass onto another
as efficiently as possible, where the criterion of efficiency is to minimise
a certain cost. In the original formulation, the cost was the average
distance covered by the mass. In other words, given a set X endowed
with a cost function, and given two probability measures µ0, µ1 on X
as constraints, the problem is to determine, if it exists, a minimizer of

inf
∫
X

c(x, s(x)) dµ0(x)

among all measurable maps s sending the initial measure µ0 onto µ1

(we denote this condition by µ1 = s]µ0).
Monge’s original problem has only been solved quite recently (Su-

dakov gave a proof first [20] but later, part of his proof appeared to be
incorrect, we refer to [3] for details). In the meantime, the importance
of the mass transport problem for other cost functions was recognized
and much work has been devoted to its study. One of the most in-
teresting cases is that of the quadratic cost (the square of the metric
distance). In Euclidean space, Monge’s problem for the quadratic cost
was solved in the eighties by Brenier [6] (and Knott-Smith [17] inde-
pendently) who was motivated by fluid mechanics problems. Brenier
showed the existence and the uniqueness of the optimal map, under
the hypothesis that the initial measure is absolutely continous with re-
spect to the Lebesgue measure. The optimal map is the gradient of a
convex function on Rn. Subsequently, this result was generalised to the
setting of Riemannian manifolds by McCann [13], taking advantage of
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a notion of generalised convex functions (so-called c-concave functions,
see Definition 3.1 below).

A difficulty in solving Monge’s problem is that the problem may
be ill-posed; a measure preserving map between two distributions of
mass may not exist. To avoid this problem, Kantorovich introduced a
relaxed version of Monge’s problem, which is to minimise the quantity∫

X×X
c(x, y) dΠ(x, y)

among all plans, namely all probability measures Π whose marginals
are µ0 and µ1 (in this case, the mass is allowed to split). This problem
admits solutions in very general settings (see Section 3). A solution s
of Monge’s problem for µ0 and µ1 induces a solution of Kantorovich’s
problem. More precisely, the plan defined by (Id, s)]µ0 is a solution.
Classically, in the quadratic cost case, existence and uniqueness of the
optimal map follow from the converse property: any optimal plan is
actually induced by a map. In this paper, we implement this strategy
for a class of metric spaces called Alexandrov spaces.

Alexandrov spaces are the natural generalization of Riemannian
manifolds whose sectional curvature is bounded below (a precise def-
inition is given in Section 2; we do note however that an Alexandrov
space is not necessarily a Gromov-Hausdorff limit of Riemannian man-
ifolds). In their seminal paper [8], Burago, Gromov, and Perelman
showed that such (finite dimensional) metric spaces possess a certain
kind of ”Riemannian structure”. This viewpoint was developed further
by Otsu and Shioya [15]. We use their results to extend McCann’s the-
orem to this setting. Our main result is the following

Theorem 1.1 Let (X, d) be a finite dimensional Alexandrov space and
µH be the corresponding Hausdorff measure. Let µ0, µ1 be probability
measures on X with compact supports such that µ0 is absolutly contin-
uous with respect to µH .

Under these assumptions, Kantorovich’s problem 4.2 admits a solu-
tion, and any optimal plan is supported in the graph of a Borel function
F . This map F is also a minimizer of Monge’s problem and satisfies
for µ almost every x ∈ X,

F (x) = exp(−∇φ(x)),

where φ is a d2-concave function (see Definition 3.1).
Moreover, up to modifications on negligeable sets, the map ∇φ is

unique, and hence so is the optimal map F .

Remark 1.2 Observe that in the above theorem, the lower bound on
the (Alexandrov) curvature does not appear explicitly in the statement.
Consequently, our result also applies to any compact Riemannian man-
ifold and allows us to give another proof of McCann’s theorem [13]. The
original proof, relying strongly on the regularity of the Riemannian ex-
ponential map, cannot be adapted to this case.
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To put our result in perspective, we end this section by citing known
results about Monge’s problem in a singular setting (all but one for Rn,
the other result is for a compact manifold). First, Gangbo and McCann
[10] extended Brenier’s result to the case of strictly convex cost func-
tions (including the case of the square of an arbitrary norm). Ambrosio
and Rigot treated the case of Heisenberg group [4]. Ambrosio, Kirch-
heim and Pratelli proved the existence of optimal maps for Monge’s
original problem for crystalline norms [2]. Very recently, Bernard and
Buffoni proved the existence of optimal maps on Finsler manifolds with
strictly convex norms [5]. We refer to the books [22, 16, 21] for more
on optimal mass transport.

Let us mention another geometric motivation which led us to study
the problem above. Recently, the notion of having bounded below
Ricci curvature has been extended to the setting of metric measure
spaces independently by Lott-Villani, and by Sturm [11, 12, 18, 19].
This equivalent definition uses optimal mass transport theory. For
a Riemannian manifold, the proof of the equivalence between both
definitions basically relies on McCann’s theorem [13] and on a non-
smooth change of variables formula [9]. A natural question (mentioned
in [11]) is whether or not an Alexandrov space has Ricci curvature
bounded below in this generalised sense. Our result may be useful in
investigating this.

The rest of this paper is organised as follows. In the next section,
we present properties of Alexandrov spaces, refering to the book [7]
for a background of the theory. We then use these results in Section
3 to prove our main theorem. A sketch of our proof is given at the
beginning of this section. In the last section, we indicate how to adapt
our result to other strictly convex costs of the distance function and
how to relax the compactness assumption on the supports of the given
measures.

2 Properties of Alexandrov spaces

In this section, we summarize known properties of Alexandrov spaces
used in the rest of the paper. These results are taken from a paper by
Burago, Gromov, and Perelman [8] and a paper by Otsu and Shioya
[15]. Most of the results of [8] and proofs can also be found in the book
[7].

Definition 2.1 (Alexandrov space) Let S2
k be the 2-dimensional

space form of curvature k and δk be the metric induced by the Rieman-
nian metric. A finite dimensional Alexandrov space X of curvature
bounded below by k is a complete, connected, locally compact, geodesic
space such that for all geodesics γ in X and γ in S2

k such that their
lengths are equal , d(p, γ(0)) = δk(p̄, γ(0)) and d(p, γ(1)) = δk(p̄, γ(1)),
the inequality below is satisfied for all t ∈ [0, 1]:

d(p, γ(t)) ≥ δk(p̄, γ(t)).
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The lower bound on the curvature of an Alexandrov space allows
one to define the angle between two geodesics starting at the same
point. Using this property, we can prove the first variation formula for
distance functions.

Lemma 2.2 (First variation formula) Let a and x be two distinct
points of an Alexandrov space X and γ be a unitary geodesic starting
from x. Then, the equality

d(a, γ(t)) = d(a, x)− t cos ∠min + o(t),

holds for all nonnegative t where ∠min is the smallest angle between γ
and a geodesic between x and a.

For a proof, we refer to [7, Corollary 4.5.7 and Remark 4.5.12] or [15,
Theorem 3.5].

To prove our main result, we will use the fact that an Alexandrov
space is not far from being a (Riemannian) manifold. We explain this
point of view, starting with a definition.

Definition 2.3 Let X be an n-dimensional Alexandrov space. A point
p ∈ X is said to be regular if the tangent cone at p is isometric to
Euclidean space and singular otherwise. Throughout the rest of this
paper, we denote by Reg(X) (respectively Sing(X)) the set of regular
(respectively singular) points of X.

Remark 2.4 The curvature bound implies that the tangent cone at
each point is unique, and is isometric to the Euclidean cone over the
space of directions at x. The Hausdorff dimension of any tangent cone
is equal to the dimension of X. (See [7] for a proof.)

We gather together the main properties of the regular set of an
Alexandrov space in three theorems. The first one states that, in a cer-
tain sense, the regular set covers almost all of X. The second theorem
shows there is a certain kind of differential structure on Reg(X). The
last establishes the existence of a Riemannan structure on Reg(X) and
the compatibility of this structure with the Alexandrov metric. The
order in which these theorems are given below is not chronological; fur-
thermore, we have mixed results proved by various authors. We hope
that this non-standard presentation helps the readers’ understanding.

Theorem 2.5 The subset Reg(X) is a dense measurable set (because
it is the intersection of countably many dense open sets) of full measure
in X. More precisely, the Hausdorff dimension of the singular set
satisfies dimH(Sing(X)) ≤ n− 1.

Proof : The first statement was proved by Burago-Gromov-Perelman
in [8], see also [7, Chapter 10]. The Hausdorff measure property was
obtained by Burago-Gromov-Perelman [8] and Otsu-Shioya [15, Theo-
rem A] independently. �
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Theorem 2.6 (Charts on Reg(X)) There exists an atlas (φ,Uφ)φ∈Φ

on Reg(X). In other words, ∀φ ∈ Φ, φ : Uφ 7→ Rn is a bilipschitz map
defined on an open set Uφ of X. Moreover, for any φ ∈ Φ, there exists
Vφ ⊂ Uφ, which is dense and of full measure such that⋃

φ∈Φ

Vφ ⊃ Reg(X).

Now, if φ, ψ ∈ Φ are such that Uφ ∩ Uψ 6= ∅, ψ ◦ φ−1 is continuously
differentiable on φ(Vφ∩Vψ∩Reg(X)) (see Definition 2.12 for a precise
definition).

Proof : This statement is proved in [15, Theorem 4.2]. �

Remark 2.7 Notice however that Sing(X) can be a dense subset of
X; an example is provided in [15].

Theorem 2.8 (Riemannian structure on Reg(X))
a) There exists a continuous Riemannian metric on Reg(X), i.e. a
family (gφ)φ∈Φ of maps such that

gφ : Uφ −→ Sym+(Rn)

is a continuous map (Sym+(Rn) denotes the set of symmetric positive
definite matrices in Rn), and these maps satisfy the usual formula

gφ =t (d(φ ◦ ψ−1)) gψ d(φ ◦ ψ−1).

b) The Riemannian structure is compatible with the Alexandrov metric,
in the following sense:
i) For any x ∈ Reg(X) any chart φ ∈ Φ such that x ∈ Uφ and any
δ > 0, there exists a neighbourhood of x in Uφ such that the map φ is a
bilipschitz homeomorphism with Lipschitz constants smaller than 1+ δ
on this neighbourhood.
ii) The tangent cone based at a point x ∈ Reg(X), endowed with the
induced metric, is isometric to (Rn, gφ(x)) (assuming that x ∈ Uφ).
iii) The metric induced by the Riemannian metric coincides with the
original metric.

Proof : Statement b)i) was obtained by Burago, Gromov, and Perel-
man in [8], see also [7, Chapter 10] for a proof. The others were proved
by Otsu and Shioya. �

Remark 2.9 Otsu and Shioya also showed that, up to some modifica-
tions (taking averages of suitable distance functions), the natural maps
can be made C1 on the whole image of Uφ ∩ Uψ ∩ Reg(X) (see [15,
section 5] for a statement). However, for our purpose, the previous
version is more convenient.

In order to give some idea of the proof of the theorem of Otsu and
Shioya, let us give some details of these charts.
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Definition 2.10 (strained points and natural charts) Let (X, d)
be an n-dimensional Alexandrov space. A point p is called a (n, ε) (or
simply ε if the dimension is implicit) strained point if there are n pairs
of points (xi, yi)i∈{1,··· ,n} in X such that ∀i, j (i 6= j) ∈ {1, · · · , n},

∠̃xipyi > π − ε,

∠̃xipxj >
π

2
− 10 ε,

∠̃xipyj >
π

2
− 10 ε,

∠̃yipyj >
π

2
− 10 ε,

where ∠̃ denotes the comparison angle. The collection (xi, yi) itself is
called a (n, ε)-strainer for p.

We denote by φx1,··· ,xn
(or simply φ if there is no ambiguity) the

following map :

φ : U −→ Rn
x 7−→ (d(x1, x), · · · , d(xn, x))

Remark 2.11 Strained points were introduced in [8]. In particular,
any regular point x is an ε-strained point for arbitrary positive ε (actu-
ally, a point is regular if and only if it is ε-strained for arbitrary ε > 0).
It follows that we can consider the above map φ for any strainer at x,
and it can be shown that this map induces a chart (in the sense of
Theorem 2.6) for ε sufficiently small. Throughout the rest of this text,
we refer to such a map as a “natural map”.

Definition 2.12 Let p be a point of X. We denote by Vp the set of
points q such that there exists a unique geodesic between p and q.
Let φx1,··· ,xn

be a natural map. We set

Vφ =
n⋂
i=1

Vxi .

One of the main ingredients used to prove Theorem 2.6 is the fol-
lowing lemma on regularity of distance functions on Alexandrov space,
which is of independent interest.

Lemma 2.13 ([15, Lemma 4.1] ) Let φ = φx1,··· ,xn be a natural
map in a neighbourhood of a regular point p and q be an arbitary point
in X. The function dq◦φ−1 is continuously differentiable on φ(Vφ∩Vq).

An important consequence of the above theorems is that Rademacher’s
theorem on Lipschitz maps holds in this setting.

Corollary 2.14 (Rademacher’s theorem) On an n-dimensional
Alexandrov space of curvature bounded below, the usual notion of dif-
ferentiability (as in the Riemannian setting), (gradient) vector field
and first order expansion are well-defined on Reg(X) hence almost ev-
erywhere. Moreover, any Lipschitz function is differentiable almost
everywhere with respect to the n-dimensional Hausdorff measure.
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Proof : More precisely, we say that a map f is differentiable at x
if there exists a natural chart φ such that x ∈ Vφ and f ◦ φ−1 is differ-
entiable at φ(x). With this definition, the differentiability statement
follows easily from the above results. Let us prove Rademacher’s theo-
rem. Reg(X) is a subset of a separable metric space, hence separable.
As a consequence, there exists a countable subset ΦN of Φ such that⋃

φ∈ΦN

Vφ ⊃ Reg(X).

Thanks to this property and the fact that Reg(X) is of full measure
in X, it is sufficient to prove that any Lipschitz map f is differentiable
almost everywhere on any open set Uφ. Now, let φ be a natural chart
defined on Uφ. The map f ◦φ−1 is a Lipschitz map (Theorem 2.8 b)1),
hence differentiable almost everywhere thanks to the usual Rademacher
theorem. We conclude the proof by noticing that φ is a Lipschitz map
(Theorem 2.8) and Vφ is a subset of full measure of Uφ (Theorem 2.6).

�

3 Optimal map on an Alexandrov space

The goal of this section is to prove Theorem 1.1. The proof is divided
in several steps. First, we use the Kantorovich duality. This result
(see Theorem 3.3) gives us the existence of an optimal plan and char-
acterizes the support of such a plan. More precisely, the support of
an optimal plan is related to special maps called c-concave functions.
This part holds in the general setting of Polish spaces. The second
step, which is the core of the proof, is a proof of the fact that any
optimal plan is supported in the graph of a map F (up to a neglige-
able set). In the penultimate step, we prove that the map F sends the
initial measure onto the final one. In the last part, we establish the
uniqueness of such a map (up to a negligeable set).

3.1 Kantorovich duality

Throughout this paragraph, we refer to µ0, µ1 as Borel probability
measures on a complete separable metric space X without any further
assumption on their support.

The dual Kantorovich problem is the problem of maximizing the
following quantity

J(φ, ψ) =
∫
X

φ(x)dµ0(x) +
∫
X

ψ(y)dµ1(y)

where φ and ψ are elements of the space Cb(X) of continuous bounded
functions on X such that ∀x, y ∈ X ×X,

φ(x) + ψ(y) ≤ c(x, y).

Under quite general assumptions, it is possible to show that ex-
trema of both problems coincide, and, moreover, any minimizer of the
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Kantorovich problem is associated to a pair of maximizers for the dual
problem. Before we state this duality theorem, we recall some def-
initions which will enable us to describe properties of a maximizing
pair.

Definition 3.1 A cost function on X is a lower semicontinuous func-
tion c : U × V 7→ R+, where U, V are Borel subsets of X. Let
φ : U 7→ R ∪ {+∞} be a proper (i.e. 6= +∞) measurable function.
We define φc : V 7→ R ∪ {−∞}, the c-transform of φ by the formula

φc(y) = inf
x∈U

c(x, y)− φ(x).

We define in a similar manner the c-transform of a function defined
on V (keeping c(x, y) unchanged because of the possible asymmetry of
c) and we call φ as above, a c-concave function if (φc)c = φ (in the
rest of the paper, we will write φcc).

Remark 3.2 Assume that a cost function is locally Lipschitz (e.g.
c(x, y) = d2/2(x, y)) and U, V are compact sets, then any c-concave
function is Lipschitz also (see [13] for a proof).

We refer to [22] or [16] for a more detailed analysis of c-concavity.
There exist numerous versions of the Kantorovich duality. We give
here a version borrowed from the book [1, Theorem 6.1.5].

Theorem 3.3 (Kantorovich duality) Let (X, d) be a complete sep-
arable metric space, µ0, µ1 be Borel probability measures on X and c
be a cost function such that∫

X×X
c dµ0dµ1 < +∞.

Then

sup
(ψ,φ)∈Cb(X)×Cb(X)

J(ψ, φ) = min
π∈S(µ0,µ1)

∫
X×X

c(x, y)dπ(x, y) (1)

where S(µ0, µ1) denotes the set of probability measures whose marginals
are µ0, µ1. In addition, there exists a maximizing pair (φ, φc) ∈ L1(µ0)×
L1(µ1) for the dual problem where φ is a c−concave function. Moreover
there exists an optimal plan γ such that for the above pair

φ(x) + φc(y) = c(x, y) γ − a.e. in X ×X. (2)

Conversely, if there exists φ ∈ L1(µ0) such that (2) holds, then γ is
optimal.

3.2 The support of an optimal plan is a graph

In this section, we prove the main technical result of this paper, namely
that the support of an optimal plan is concentrated on the graph of a
function. First, we state a lemma on the differentiability of a function
along geodesics.
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Lemma 3.4 (Differentiability along geodesics) Let f be a func-
tion on X, differentiable at a point x ∈ Reg(X) and γ be a unitary
geodesic defined on [0, T ]. Then, the Taylor expansion given below
holds:

f(γ(t)) = f(x) + t〈∇f(x), γ′(0)〉+ o(t).

Proof : Let φ = φp1,··· ,pn be a natural map around x such that
x ∈ Vφ. By definition, f ◦ φ−1 is then differentiable in the usual sense.
It remains to prove that φ ◦ γ is differentiable at 0. This follows from
the first variation formula (Lemma 2.2) using the fact that x ∈ Vφ. �

Lemma 3.5 Let ψ be a d2/2-concave function on an Alexandrov space
(X, d). Let us assume that the supports of ψ and ψc are compact sets.
Then

1
2
d2(x, y) ≥ ψ(x) + ψc(y) (3)

for all x, y ∈ X. If x ∈ Reg(X) is a point where ψ is differentiable,
then equality holds in (3) if and only if y = exp x(−∇ψ(x)).

Remark 3.6 expx(−∇ψ(x)) denotes the endpoint of the geodesic whose
direction is ∇ψ

|∇ψ| and is parametrized on [0, |∇ψ(x)|]. In particular,
d(x, exp x(−∇ψ(x)) = |∇ψ(x)|.

Proof : The inequality follows from the definition of ψc. The com-
pactness of the support of ψc implies the existence of a pair which sat-
isfies the equality. So, let us assume that the equality holds in (3) for
a pair (x, y). We set θ(z) = d2(y, z)/2. Let γ(t) be a unitary geodesic
which starts at x and is parametrized by [0, T ]. By assumption on x
and y, we have

θ(γ(t))− θ(x) = d2(γ(t), y)/2− d2(x, y)/2
≥ ψ(γ(t))− ψ(x)
≥ t〈∇ψ(x), γ′(0)〉+ o(t)

where we get the first inequality from (3) and the second from Lemma
3.4. The function θ is said to be subdifferentiable at x with subgradient
∇ψ(x). Now, we are going to prove that θ is also superdifferentiable
at x (actually everywhere). As a consequence, we will get that θ is
differentiable at x and the subgradient and the supergradient coincide,
yielding the equality at the end of the proof.

Applying the first variation formula (Lemma 2.2) to θ and γ yields

d2(γ(t), y) ≤ d2(x, y) +−2td(x, y) cos ∠(σ′(0), γ′(0)) + o(t)

where σ is a geodesic between x and y, and ∠(σ′(0), γ′(0)) is the angle
between σ and γ. Let us remark that the above inequality holds true
for any geodesic γ starting at x and any other geodesic linking x and
y (if any).

Letting t go to 0, we obtain

〈∇ψ(x) + d(x, y)σ′(0), γ′(0)〉 ≤ 0.
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To prove the reverse inequality, one would like to consider a geodesic
which starts at x and whose direction is −γ′(0). Unfortunately, we
cannot suppose such a geodesic exists; however, applying the above
argument to a sequence of geodesics starting at x and whose directions
converge to −γ′(0) allows to conclude that the function θ is differen-
tiable at x and

∇ψ(x) = −d(x, y)σ′(0).

This gives the characterization of y stated in the lemma.
�

Remark 3.7 Note that we also showed that if x is a point such that
ψ is differentiable at x, there exists a unique geodesic between x and
expx(−∇ψ(x)).

Now, we can deduce from the previous lemma that any optimal plan
is actually supported in the graph of a Borel function.

Proposition 3.8 Let Π0 be a minimizer of the variational problem

min
∫
X×X

d2(x, y) dΠ(x, y)

among all couplings on X × X whose marginals are two probability
measures µ0, µ1 that satisfy the assumptions of Theorem 1.1. Then,
there exists a measurable function F such that

Π0 = (Id, F )]µ0.

Moreover, the map F is defined by the formula

F (x) = expx(−∇ψ(x)) (4)

and ψ is a d2/2-concave function.

Remark 3.9 By abuse of language, we will say that F is a minimizer
of the above problem.

Proof : We deduce from Kantorovich duality (Theorem 3.3) the
existence of a pair (ψ,ψc) of c-concave maps which are locally Lipschitz
maps (see Remark 3.2) and such that∫

X×X
d2/2(x, y) dΠ0(x, y) =

∫
X

ψ(x)dµ0(x) +
∫
X

ψc(y)dµ1(y)

where (ψ,ψc) satisfy (3) by definition of the c-transform. Now, Radema-
cher’s theorem and Lemma 3.5 imply that the support of Π0 is con-
centrated on the graph of the map

F (x) = expx(−∇ψ(x)).

Note that the map F restricted to the subset of Reg(X) of points where
φ is differentiable is a continuous map. Hence, the measurability of
Reg(X) (Theorem 2.5) entails the measurability of F .
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It remains to prove that F]µ0 = µ1. Let Z be a subset of Reg(X)
of full measure, such that ∀x ∈ Z,ψ is differentiable at x. By definition
of Π0 and by assumption on µ0, Π0(Z ×X) = 1. As a consequence, if
A is a Borel set of X, then the following equalities hold

µ1(A) =
∫
X×A

dΠ0 =
∫
Z×A

dΠ0

= µ0(Z ∩ F−1(A)) = F]µ0(A).

�

3.3 Uniqueness property

It remains to prove the uniqueness of the optimal plan and optimal
map. The results of Subsection 3.2 reduce the proof to the case of the
optimal map. Therefore, to complete the proof of Theorem 1.1, we
just need the following result.

Proposition 3.10 Under the assumptions of Theorem 1.1, we set
t(x) = exp x(−∇ψ(x)) where ψ is a d2/2-concave function, a solu-
tion of Monge’s problem. Then, up to modifications on a negligeable
subset, the map ∇ψ is uniquely determined.

Proof : Let s be another solution. Namely, s is a Borel function,
mapping µ0 to t]µ0, such that:∫

X

ψ dµ0 +
∫
X

ψc dt]µ0 =
∫
X

1
2
d2(x, s(x)) dµ0.

As t]µ0 = s]µ0 by assumption, we get∫
X

ψ(x) + ψc(s(x))− 1
2
d2(x, s(x)) dµ0(x) = 0,

where the integrand is nonpositive by definition of the c-transform,
and consequently is equal to 0 µ0 almost everywhere. Lemma 3.5
and Rademacher’s theorem allow us to conclude that s = t almost
everywhere. The uniqueness of ∇ψ follows from Remarks 3.6 and 3.7.
�

4 Generalisation to other costs

As in the Riemannian case, our main result can be adapted to other
strictly convex costs of the distance function. Compactness of supports
can also be relaxed. The proof of the theorem below is similar to the
proof in the Riemannian case, so we only sketch it. We refer to [1,
Theorem 6.2.4] for a detailed proof in the Euclidean case.

Throughout the section, we consider a cost c(x, y) defined by

c(x, y) = h(d(x, y)),
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where h : R+ 7→ R+ is a strictly convex and nondecreasing differen-
tiable function.

We also use the approximate differential of a map, which we recall
the definition of in this setting.

Definition 4.1 We say that f : X 7→ R has an approximate differen-
tial at x ∈ Reg(X) if there exists a map g : X 7→ R differentiable at x
such that the set {f 6= g} has density 0 at x.

Theorem 4.2 Let (X, d) be a finite dimensional Alexandrov space and
µH be the corresponding Hausdorff measure. Let µ0, µ1 be probability
measures on X such that µ0 is absolutly continuous with respect to µH
and ∫

X×X
c dµ0dµ1 < +∞.

Under these assumptions, the Kantorovitch problem admits a solution,
and any optimal plan is supported in the graph of a Borel function F .
This map F is also a minimizer of Monge’s problem and satisfies for
µ almost every x ∈ X,

F (x) = exp(− (h′)−1(|∇̃φ(x)|)
|∇̃(φ(x))| ∇̃φ(x)),

if |∇̃φ(x)| 6= 0 and F (x) = x otherwise. φ is a c-concave function
(see Definition 3.1) and ∇̃ denotes the approximate gradient of φ.

Moreover, up to modifications on negligeable sets, the map ∇̃φ is
unique, and as a consequence so is the optimal map F .

Proof : To get the result, we only have to prove an analogue of
Lemma 3.5. To this aim, we set (φ, φc) a maximizing pair of the dual
Kantorovich problem. To circumvent difficulties arising from the non-
compactness of supports, we use auxilliary maps defined on compact
subsets. We fix o ∈ X, R a positive number, and define

φR(x) = inf
B(o,R)

c(x, y)− φc(y).

As h is a convex function, the cost c is a locally Lipschitz map and so is
φR. By compactness, for any x ∈ support(µ0), there exists y ∈ B(o,R)
such that

φR(x) + φc(y) = h(d(x, y)).

Now, let us assume that φR is differentiable at x and set θ(x) = c(x, y).
Arguing as in Lemma 3.5, we get that θ is subdifferentiable at x with
subgradient ∇φR(x). The differentiability of h entails that θ is also
superdifferentiable at x (see Lemma 3.5)

θ(γ(t)) ≤ θ(x)− th′(d(x, y)) cos ∠(σ′(0), γ′(0)) + o(t) (5)

where we use the notations of Lemma 3.5.
Consequently, using the strict convexity of h, we get the following

equivalence (assuming φR is differentiable at x):

φR(x) + φc(y) = c(x, y)

if and only if
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y = exp(− (h′)−1(|∇φR(x)|)
|∇(φR(x))| ∇φR(x))

where the equality reads y = x in the case where |∇(φR(x))| = 0.
Now, let Π be an optimal plan, the Kantorovich duality implies

φ(x) + φc(y) = c(x, y) Π− a.e.

Therefore, for µ0 almost every x ∈ X, there exists y such that the
above equality holds. This entails that

⋃
R∈N∗{φ = φR} is a subset

of full measure. We conclude the proof as in [1] (note that Lebesgue’s
theorem on approximate differentiability holds in our setting thanks to
the existence of charts on Reg(X) satisfying Property b)i) of Theorem
2.8 and Theorem 2.5).
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