
A NOTE ABOUT RATIONAL REPRESENTATIONS OF
DIFFERENTIAL GALOIS GROUPS.

MARC REVERSAT

Abstract. We give a description of the rational representations
of the differential Galois group of a Picard-Vessiot extension.
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We give a description of the rational representations of the differen-
tial Galois group of a Picard-Vessiot extension (theorems 1.1 and 2.1).
This gives a new description of the differential Galois correspondence.
More results will be given for abelian differential extensions in a forth-
coming paper [1], especially the analog of the Artin correspondence.

1. On representations of Galois groups of Picard-Vessiot
extensions.

In all this note we consider differential fields with algebraically closed
fields of constants, denoted by C. The derivative will be denoted by a
dash.

Let K be a differential field. Let n ≥ 1 be an integer, Mn(K) and
GLn(K) are the usual notations for algebra and group of n×n matrices
with entries in K. The group GLn(K) acts on Mn(K) by the following
rule:

GLn(K)×Mn(K) −→ Mn(K)
(U,A) 7−→ U ′U−1 + UAU−1

where if U = (ui,j)1≤i,j≤n, then U ′ = (u′i,j)1≤i,j≤n. This action can be
defined in an other way, maybe more comprehensible. Consider the
group

Hn(K) := Mn(K)×GLn(K),

Date: January 22, 2007.
1
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the law being defined by the following formula: for all A,B in Mn(K)
and all F,G ∈ GLn(K)

(A,F )(B,G) = (A+ FBF−1, FG).

It admits the subgroups

∆n(K) :=
{
(U ′U−1, U) / U ∈ GLn(K)

}
,

{0} ×GLn(K) and Mn(K)× {1}, this last one being normal. We set

Zn(K) := ∆n(K)\Hn(K)/ ({0} ×GLn(K)) .

The group GLn(K) acts on Mn(K)× {1} by the following rule:
GLn(K)× (Mn(K)× {1}) −→ (Mn(K)× {1})

(U, (A, 1)) 7−→ (U ′U−1, U)(A, 1)(0, U−1)
= (U ′U−1 + UAU−1, 1)

With the identification Mn(K) = (Mn(K)× {1}) and inclusion
(Mn(K)× {1}) ⊂ Hn(K), it induces a canonical bijection

(1) GLn(K)\Mn(K) ' ∆n(K)\Hn(K)/ ({0} ×GLn(K)) = Zn(K).

We will use below these two definitions of Zn(K).
Let A be in Mn(K) and F be in GLn(K), we denote by [(A,F )],

resp. [A], the class in Zn(K) of (A,F ) ∈ Hn(K), resp. of A ∈ Mn(K).
Let L/K be a Picard-Vessiot extension. The inclusion Hn(K) ⊆

Hn(L) gives rise to a map α(L/K) : Zn(K) → Zn(L). We set

Zn(L/K) := {a ∈ Zn(K) / α(L/K)(a) = [0]} .
For any group G we denote by Repn(G) the set of equivalent classes

of representations of G in GLn(C), if G = dGal(L/K) is the differential
group of L over K, we set Repn(L/K) := Repn(G).

Theorem 1.1. Let L/K be a Picard-Vessiot extension, then there ex-
ists a natural bijection between Zn(L/K) and Repn(L/K).

Proof. First of all we recall some facts that are of main importance in
our proof.

1.0.1. The representation cA. Consider the differential equation Y ′ =
AY , with A ∈ Mm(K), and let E/K be a corresponding Picard-Vessiot
extension, i.e. E is generated over K by the coefficients of a funda-
mental matrix FA of the equation. The rational representation cA is

dGal(E/K) −→ GLm(C)
σ 7−→ cA(σ)

where cA(σ) is such that σ(FA) = FAcA(σ). Note that cA depends only
on the class [A] of (A, 1) in Zm(K), because ifB = U ′U−1+UAU−1 with
U ∈ GLm(K), a fundamental matrix of the equation Y ′ = BY is UFA
and we see that cB = cA. Note also that an other fundamemtal matrix
is of the form FAγ, with γ ∈ GLn(C), then it gives the representation
γ−1cAγ equivalent to cA.
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We will write equivalently cA, c[A] or cE for this class of representa-
tions.

1.0.2. The Galois group dGal(E/K). Let A ∈ Mm(K) and

R = K[(Xi,j)1≤i,j≤m, (det)−1]/q = K[(xi,j)1≤i,j≤m]

be a Picard-Vessiot ring over K for the equation Y ′ = AY . In these for-
mulas the Xi,j are indeterminates, the ring K [(Xi,j)1≤i,j≤m] is equipped
by the derivation satisfying (X ′

i,j)1≤i,j≤m = A(Xi,j)1≤i,j≤m, “det” is the
determinant of the matrix (Xi,j)1≤i,j≤m, q is a maximal differential ideal
and xi,j is the image of Xi,j. Let E = Quot(R) and U = dGal(E/K),
consider

K
[
(Xi,j)1≤i,j≤m, (det)−1

]
⊆ E

[
(Xi,j)1≤i,j≤m, (det)−1

]
= E

[
(Yi,j)1≤i,j≤m, (det)−1

]
⊇ C

[
(Yi,j)1≤i,j≤m, (det)−1

]
,

where (Yi,j)1≤i,j≤m is defined by (Xi,j)1≤i,j≤m = (xi,j)1≤i,j≤m(Yi,j)1≤i,j≤m.
Note that Y ′

i,j = 0. We know that

U = dGal(E/K) = SpecC
[
(Yi,j)1≤i,j≤m, (det)−1

]
/J

where J = qE [(Yi,j)1≤i,j≤m, (det)−1]∩C [(Yi,j)1≤i,j≤m, (det)−1] ([2] proof
of prop. 1.24 or the beginning of §1.5). We denote by yi,j the image of
Yi,j, then we have

U = dGal(E/K) = SpecC [(yi,j)1≤i,j≤m]

1.0.3. U = dGal(E/K) as a torsor. We continue with the previous
notations. Set T = SpecR, we know that T is an U-torsor over K ([2]
theorem 1.30), moreover, we know that there exists a finite extension
K̃ of K such that T ×K K̃ = Spec

(
R⊗K K̃

)
is a trivial U-torsor over

K̃ ([2] cor. 1.31), this means that there exists b ∈ T(K̃) such that the
following map is an isomorphism of K̃-schemes

ψ : U×C K̃ −→ T ×K K̃
(ci,j)1≤i,j≤m 7−→ b(ci,j)1≤i,j≤m

(b can be seen as a matrix, on the right this is a product of matrices;
see the definition of R above).

1.0.4. Galois actions. Let σ be an element of U = dGal(E/K), the
action of σ on R is given by the images of the xi,j, which are defined
by the matrix formula (σ(xi,j)) = (xi,j)cE(σ). We denote by σ[ the
morphism induces by σ on T or on T×K K̃, this is the action of U which
defines the torsor structure. An element of T(K̃) can be represented by
a matrix a = (ai,j)1≤i,j≤m with ai,j in K̃, its image is σ[(a) = acE(σ).
For any σ in U denote by λσ the right translation on U by σ, i.e.

λσ : U → U
τ 7→ τσ
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Write again λσ for λσ × Id eK : U×C K̃ → U×C K̃, then the morphism
ψ of (1.0.3) is equivariant, this means that for any σ ∈ U the following
diagram is commutative

U×C K̃
ψ→ T ×K K̃

λσ ↓ ↓ σ[

U×C K̃
ψ→ T ×K K̃

Proof of the theorem, the map Zn(L/K) → Rn(L/K).
Let A ∈ Mn(K) such that [A] ∈ Zn(L/K), then there exists U ∈

GLn(L) such that
A = U ′U−1,

this means that U is a fundamental matrix of the equation Y ′ = AY ,
as it is with entries in L, it exists a differential subextension E of L
which is a Picard-Vessiot extension for the equation Y ′ = AY . Denote
by ρA the representation

(2) ρA : dGal(L/K)
restriction−→ dGal(E/K)

cA−→ GLn(C).

Now we prove that this representation ρA does not depend on the
class of A in Zn(K) and of the choice of U ∈ GLn(L) such that A =
U ′U−1.

Let B ∈ Mn(K) such that [B] = [A] in Zn(K), then there exists
W,T ∈ GLn(K) such that

(B, 1) = (W ′W−1,W )(A, 1)(0, T ),

it follows that B = W ′W−1 + WAW−1, this means that WU is a
fundamental matrix of the equation Y ′ = BY . We see that ρA = ρB,
and we denote this representation by ρ[A].

Let V ∈ GLn(L) such that A = U ′U−1 = V ′V −1, then we see that
(V −1U)

′
= 0, this means that there exists γ ∈ GLn() such that U = V γ

and the two representations define as before in (2) are conjugate.
Then to each element [A] of Zn(L/K) we have associated the element

ρ[A] of Repn(L/K).
Proof of the theorem, the map Rn(L/K) → Zn(L/K).
Let ρ : dGal(L/K) → GLn(C) be a rational representation. Let

E be the fixed field of ker ρ, we set U = dGal(E/K) and we denote
again by ρ the representation U ↪→ GLn(C) coming from the given one.
The field E is a Picard-Vessiot extension corresponding to an equation
Y ′ = AY , with A ∈ Mm(K). Our aim is to prove that one can chose A
in Mn(K), i.e. m = n, and that this gives the inverse map of [A] 7→ ρ[A].

We use the previous notations and descriptions of E, R, U, T etc.
We set GLn(C) = SpecC[(Tr,s)1≤r,s≤n, (det)−1], let

ρ] : C
[
(Tr,s)1≤r,s≤n, (det)−1

]
−→ C

[
(Yi,j)1≤i,j≤m, (det)−1

]
/J
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be the comorphism of ρ : U ↪→ GLn(C); ρ] is onto. Set I = ker(ρ]),
then we have an isomorphism induces by ρ]

ρ̄ : C
[
(Tr,s)1≤r,s≤n, (det)−1

]
/I ' C

[
(Yi,j)1≤i,j≤m, (det)−1

]
/J.

Let tr,s be the image of Tr,s in the quotient on the left, and recall that
yi,j are that of Yi,j in the quotient on the right, then the preceding
formula can be written

ρ̄ : C [(tr,s)1≤r,s≤n] ' C [(yi,j)1≤i,j≤m] .

Set V = Spec (C [(tr,s)1≤r,s≤n]), this is an algebraic subgroup of GLn(C),
it is isomorphic to U via the morphism induces by ρ̄, denoted by abuse
of language ρ : U ' V.

The composed morphism (see (1.0.3))

(3) ϕ : T ⊗K K̃
ψ−1

−→ U×C K̃
ρ×Id eK−→ V×C K̃

is an isomorphism of K̃-schemes, equivariant for the actions of U and
V, this means that for any σ in U we have ϕ ◦ σ[ = λρ(σ) ◦ ϕ, where,
as before, λρ(σ) is the endomorphism of V×C K̃ coming from the right
translation by ρ(σ) on V (1.0.4).

Lemma 1.2. Let ϕ] be the comorphism of ϕ (see (2))and for any
r, s = 1, · · · , n set zr,s = ϕ](tr,s) (recall that V = SpecC[(tr,s)1≤r,s≤n]).
Then, for all σ ∈ U, there exists a matrix a(σ) ∈ GLn(C) such that we
have the equality of matrices: (σ(zr,s))1≤r,s≤n = (zr,s)1≤r,s≤na(σ).

Proof. Denote by λ]ρ(σ) the comorphism of the right translation by ρ(σ)

on V×C K̃, we have the equalities of matrices
(σ(zr,s))1≤r,s≤n =

(
σ

(
ϕ](tr,s)

))
1≤r,s≤n

=
(
ϕ]

(
λ]ρ(σ)(tr,s)

))
1≤r,s≤n

,

because ϕ is equivariant, and(
λ]ρ(σ)(tr,s)

)
1≤r,s≤n

= (tr,s)1≤r,s≤na(ρ(σ))

where for any τ ∈ V the matrix a(τ) is in GLn(C) and is such that
the formula (τ(tr,s))1≤r,s≤n = (tr,s)1≤r,s≤n a(τ) defines the images of the
tr,s by the comorphism λ]τ of the right translation on V by τ . We have
find

(σ(zr,s))1≤r,s≤n = (zr,s)1≤r,s≤n a(ρ(σ))

with a(ρ(σ)) in GLn(C). �

The fact that ϕ is an isomorphism implies that R⊗K K̃ is generated
over K̃ by the zr,s, 1 ≤ r, s ≤ n, indeed R ⊗K K̃ is generated over K̃
by the C-space V :=

∑
1≤r,s≤nCzr,s and the lemma shows that this

space V is (globally) invariant under the action of the Galois group
U. The (ordinary) Galois group Gal(K̃/K) acts as usual on the right
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hand factor of R ⊗K K̃ and trivially on the left one, then we see that
R is generated over K by the zr,s, 1 ≤ r, s ≤ n.

Another consequence of the previous lemma is that the matrix

D
def
=

(
z′r,s

)
1≤r,s≤n (zr,s)

−1
1≤r,s≤n ,

is in Mn(K), then, because ϕ] is an isomorphism, the ring R is gener-
ated by the entries of a fundamental matrix of the equation Y ′ = DY ,
we know also that R is a simple differential ring. It follows that R,
resp. E, is the Picard-Vessiot ring, resp. field, over K of this equation.

To a rational representation ρ : dGAl(L/K) → GLn(C) we have
associated an element [D] of Zn(L/K), this is clearly the inverse map
of [A] 7→ ρ[A]. �

2. A correspondance.

Let Kdiff be a universal Picard-Vessiot extension of K and set Gdiff =
dGal(Kdiff/K).We choose once of all an identification GLn(C) = GL(Cn).

Let Rep
n
(Gdiff) be the category of representations of Gdiff in GLn(C):

the objects are morphisms ρ : Gdiff → GLn(C), an arrow f : ρ1 → ρ2

is a C-linear map from Cn into itself such that, for any g ∈ Gdiff , the
following diagram is commutative

Cn ρ1(g)−→ Cn

f ↓ ↓ f
Cn ρ2(g)−→ Cn

To define the category Zn(K) we need the following remarks. Let
M and N be two elements of Mn(K), we say that they are equivalent
if there exists U and V in GLn(K) such that N = VMU . We denote
by M the equivalent class of M . Let Ai ∈ Mn(K), i = 1, 2 and let
M ∈ Mn(K) such that

(4) M ′ = A2M −MA1.

Let Bi ∈ [Ai], let Ui ∈ GLn(K) such that

Ai = U ′
iU

−1
i + UiBiU

−1
i ,

then an easy calculation shows that

(U−1
2 MU1)

′ = B2(U
−1
2 MU1)− (U−1

2 MU1)B2.

Suppose that M ∈ GLn(K) and satisfies (4), then

(M−1)′ = A1M
−1 −M−1A2.

Now we can define the category Zn(K). Its objects are elements of
Zn(K) (see (1)), an arrow [A1] → [A2], where A1 and A2 are elements
of Mn(K), is an equivalence class M in Mn(K) such that there exists
M ∈ M satisfying (4). The two preceding formulas show that this
definition does not depend on the choice of Ai in [Ai], i = 1, 2, and
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that invertible arrows in Zn(K) correspond to equivalence classes of
invertible matrices. We explain the composition of arrows. Let M :
[A1] → [A2] and N : [A2] → [A3] two arrows of Zn(K), choose M ∈M ,
N ∈ N such that

M ′ = A2M −MA1 and N ′ = A3N −NA2,

then we see that
(NM)′ = A3NM −NMA1.

The composed arrow is N ◦M = NM , for a good choice of representing
elements of the different classes of matrices.

Then Zn(K) is a category, indeed it is easily to see that it is an
additive category.

Theorem 2.1. The two categories Zn(K) and Rep
n
(Gdiff) are equiva-

lent. On objects, this equivalence is [A] 7→ c[A] (see (1.0.1)).

Proof. Note that here to write c[A] is an abuse of notation, if L/K is the
Picard-Vessiot extension (contained in Kdiff) associated to the equation
Y ′ = AY , we denote always c[A] the representation

Gdiff restriction−→ dGal(L/K)
c[A]−→ GLn(C).

The map [A] 7→ c[A] on objects of the categories has been constructed
in the previous theorem, it is one to one. Let [A1] and [A2] be two
objects of Zn(K) and M : [A1] → [A1] be an arrow, select M ∈ M
such that M ′ = A2M −MA1. Let F1, F2 ∈ GLn(K

diff) be fundamental
matrices for respectively the equations Y ′ = A1Y and Y ′ = A2Y . Then
F ′
i = AiFi, i = 1, 2. Let f = F−1

2 MF1, a priori f is in GLn(K), but

f ′ = (F−1
2 )′MF1 + F−1

2 M ′F1 + F−1
2 MF ′

1

= (−F−1
2 A2)MF1 + F−1

2 (A2M −MA1)F1

+F−1
2 MA1F1 = 0.

Then f = F−1
2 MF1 is in GLn(C). Now we prove that f is a morphism

from c[A1] to c[A2]. Let g be an element of Gdiff . Applying g to the
relation f = F−1

2 MF1 we find

f = g(F−1
2 )Mg(F1) = g(F−1

2 )F2fF
−1
1 g(F1) = c[A2](g)

−1fc[A1](g),

(see (1.0.1)) for all g. This means that f : c[A1] → c[A2] is a map in
Rep

n
(Gdiff).

Conversely let f : ρ1 → ρ2 be an arrow of Rep
n
(Gdiff), then we can

see f as a matrix with coefficient in C. We know that there exists Ai in
Mn(K) such that ρi = c[Ai], i = 1, 2. Let as before Fi be a fundamental
matrix for the equation Y ′ = AiY . Set M = F2fF

−1
1 .

- We prove that M is in Mn(K). The fact that f is a morphism of
representations means that for all g in Gdiff we have

fc[A1](g) = c[A1](g)f,
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which is equivalent to
fF−1

1 g(F1) = F−1
2 g(F2)f,

then
F2fF

−1
1 = g(F2)fg(F

−1
1 ) = g(F2fF

−1
1 ).

This prove that the entries of M are in K.
- We prove the formula M ′ = A2M −MA1. We have

M ′ = F ′
2fF

−1
1 + F2f(F−1

1 )′ = A2F2fF
−1
1 + F2f(−F−1

1 A1)

which is the expected formula. �
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