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We shall prove here what was called hypothesis 3 in the author’s thesis [Ch1],
page 159.

1. Theorem

1.1. In short. — Let p/q be an irreducible fraction (q > 0). Let us define the
polynomial P (z) = ei2πp/qz + z2. It is well known that the parabolic fixed point
z = 0 is the only non repelling periodic point of P , and moreover that it has precisely
q repelling petals. The action of P on the (repelling) Écalle-Voronin cylinders is
therefore transitive. We will choose one end of these cylinders and call it ν. Let
ω ∈ R be any bounded type irrational. The theory of parabolic enrichment then
associates to this data a unique Julia-Lavaurs set L with a virtual Siegel disk with
center ν and virtual multiplier exp(i2πω).

Theorem 1. —
lebL = 0.

It shall be noted that we will not make use of the classification of Fatou components
of Julia-Lavaurs sets.

1.2. More details. — For typesetting system reasons, we will note int(X) the
interior of a set X.

Let K be the filled-in Julia set, and J the Julia set, of

P (z) = ei2πp/qz + z2.

The theory of parabolic enrichment defines Lavaurs maps gσ : int(K) → C, where
σ ∈ C is a complex parameter. They commute with P . For simplification, the
Lavaurs map we will use is a modification of the usual Lavaurs map, that is described
in [Ch2]. It is less symmetric (the relation gσ ◦ P = P ◦ gσ is slightly modified, but
gσ ◦ P q = P q ◦ gσ still holds; moreover they define the same Julia-Lavaurs sets).
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The filled-in Julia-Lavaurs set N consists in the complement of preimages of the
basin of infinity by iterates of the Lavaurs maps:

C \N =
⋃
n∈N

g−nσ (C \K)

One of many equivalent definitions of the Julia-Lavaurs set is the boundary (in C) of
the filled-in Julia-Lavaurs set:

L = ∂N.

This set is compact, completely invariant by P (meaning P (L) = L and P−1(L) = L),
and contains J .

These sets depend only on σ mod Z, as follows for instance from the property:
gσ+1 = P q ◦ gσ and the fact K is completely invariant by P .

A closely related and more easily understandable function is the horn map hσ. Let
Tσ be the translation by σ in the complex plane. The Lavaurs and horn maps are
related to each other by the following relations:

gσ = ψ+ ◦ Tσ ◦ φ÷
hσ = Tσ ◦ φ÷ ◦ ψ+

Where φ÷ : int(K) → C and ψ+ : C → C are analytic functions. This implies for
instance that ψ+ is a semi-conjugacy from hσ to gσ: ψ+ ◦ hσ = gσ ◦ ψ+.

These relations are better explained on the following non commuting diagram:

C

φ÷

��3333333

C+

ψ+

EE�������
C−

Tσ

oo

In this diagram, C is the complex plane where P lives, C− is the plane of the attracting
Fatou coordinates, C+ the plane of the repelling Fatou coordinates, φ÷ : int(K)→ C−
is the extended attracting Fatou coordinate, and ψ+ : C+ → C is the extended
repelling Fatou coordinate. See [Do], then [Ch2] for their definitions. Then gσ and
hσ are defined by following the arrows according to the illustration below:

C
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The preimage of L in repelling Fatou coordinates is a closed set, ψ−1
+ (L), that we

will note L′. The preimage of N will be noted N ′. And we set J ′ = ψ−1
+ (J) and

K ′ = ψ−1
+ (K), which are also closed. Then L′ and N ′ can be characterized in terms

of hσ and K ′:
1. def hσ = int(K ′),
2. C \N ′ =

⋃
n∈N h

−1
σ (C \K ′),

3. L′ = ∂N ′.

Proof. — Obviously, def hσ = ψ−1
+ (int(K)). Claim (1) then follows from ψ+ being a

continuous and open map: ψ−1
+ (int(K)) = int(ψ−1

+ (K)). Claim (2) is trivial. Claim
(3) also follows from ψ+ being continuous and open.

From the definition of hσ, it follows that

h−1
σ (N ′) = N ′ ∩ def hσ.

Since hσ is an open and continuous map, this yields

h−1
σ (L′) = L′ ∩ def hσ.

Let π : C→ C/Z be the canonical projection. The map hσ turns out to commute
with T1. It therefore defines a quotient map from π(int(K ′)) to C/Z. The cylinder
is identified to C∗ via the exponential map z 7→ exp(i2πz). Let S2 be the Riemann
sphere: the embedding C∗ ⊂ S2, enables to consider the cylinder C/Z completed by
its two ends as a Riemann surface isomorphic to S2. We will note +i∞ the upper end
(corresponding to 0 in S2) and −i∞ the lower end (corresponding to ∞ in S2).

The set int(K ′) is a neighborhood of both ends of the cylinder, and it turns out
that hσ has an analytic extension there, fixing each end, with non zero multiplier (see
[DoHu], [La], [Sh]). These two multipliers are called the virtual multipliers.

Now, remind that the hσ are defined as the following composition: Tσ ◦ φ÷ ◦ ψ+.
Therefore, given t ∈ C, changing hσ into hσ+t changes the virtual multipliers by
multiplying them by exp(i2πt) for the upper end and exp(−i2πt) for the lower end.
This is why, given a rotation number ω and one of the two ends of the cylinder, there
is only one value of σ mod 1 such that hσ has virtual multiplier exp(i2πω) at this
end. From now on, we will fix σ to this value.

2. Proof

The question of measure of the Julia set in the case of a quadratic polynomial with
a bounded type Siegel disk has been first settled by Petersen and Lyubich. They
use a quasiconformal model constructed from a Blaschke fraction. Then McMullen
proved this Julia set has Hausdorff dimension < 2. These works have been further
generalised.

In our case, points in the Julia set will be separated into classes, according to
their behavior: P -type, J-type, R-type and F -type points. The first class will be
handled by adapting McMullen’s techniques to our setting: it turns out to be quite
straightforward. The other classes are easier (in the author’s opinion).



4 ARNAUD CHÉRITAT

We will make use of the following notations. If I ⊂ R is an open interval, CI is
defined as CI = C \ (R \ I). It is an open subset of C. If U ( C is a connected
and simply connected open subset of C, let dU be the hyperbolic distance on U and
BU (z, r) the hyperbolic ball of center z and radius r.

2.1. Remark about critical circle maps. — Let us recall the

Definition 1. — Here, a critical circle map is a map f : T → T that is analytic,
bijective, orientation preserving, and has one and only one critical point, of local
degree 3.

A reference on this is [FaMe], that generalise the work of [Mm], using [Ya].
Here, for simplicity, we chose to adapt [Mm] to prove that the set of P -type

points has measure equal to 0. However, the techniques of Lyubich explained in [Ya]
probably directly give it. The author ignores if [FaMe] does.

2.2. Reduction to a model. — To fix ideas, we will now assume that the end
of the cylinder at which we put the Siegel disk is the upper end. All the discussion
below works for the other case.

In [Ch2], the author defined a pre-model map β. It plays for hσ the role that the
Blaschke fraction B = z2 z−3

1−3z plays for the quadratic map ei2πωz+ z2 in the Douady,
Ghys, Herman (and others) surgery: in both cases one can modify by surgery the
pre-model to obtain a model β̃ (resp. B̃). See [Ch2] for details.

We will use the following properties of β and β̃: (the following list has redundancies)

1. def(β̃) is an open set that contains the closed upper half plane “ Im z ≥ 0”,
2. β̃ is a continuous open map,
3. β is analytic, and real-symmetric (i.e. def(β) is invariant by the reflection s :
z 7→ z, and β commutes with s),

4. R ⊂ def(β),
5. the restrictions of β̃ and β to the half-plane “ Im z ≤ 0” coincide (i.e. they have

the same set of definition and are equal on this set),
6. in particular, β̃ is analytic below R,
7. the restriction of β̃ to R induces a critical circle map, with rotation number ω,
8. β̃ induces a homeomorphism from H to H,
9. def(β̃) is T1 invariant and β̃ commutes with T1, and the same hold for β,

10. there is a quasiconformal map S, commuting with T1, and conjugating β̃ to hσ,
sending the upper half cylinder to the Siegel disk of hσ associated to the upper
end,

11. 0 is a critical value of β̃.

The maps hσ and β̃ commute with T1 and therefore induce dynamics on the cylin-
der. The map S commutes with T1 and therefore induces a (quasiconformal) conju-
gacy between them, that fixes both ends of the cylinder. Let us call ĥσ the continu-
ation (of the map induced by hσ) that fixes both ends. Thus the map induced by β̃
has also a continuation β̂ that fixes both ends. It is analytic at the lower end.



THE MEASURE OF JULIA-LAVAURS SETS WITH A VIRTUAL SIEGEL DISK 5

Since quasiconformal maps preserve sets of zero Lebesgue measure, it is enough to
work on the model β̃. If we define sets J ′′, K ′′, L′′, N ′′ as the preimages of J ′, K ′,
L′, N ′ by S, we have an analogous characterization in terms of β̃.

1. def β̃ = int(K ′′),

2. C \N ′′ =
⋃
n∈N β̃

−1(C \K ′′),
3. L′′ = ∂N ′′.
We will note b be the restriction of β̃ to the half plane H = “ Im z < 0”: it is an

analytic map from an open subset of H to C.

2.3. Covering properties. — Let X, Y be Riemann surfaces. For an analytic
function f : X → Y , let Va(f) be its set of asymptotic values, and Vc(f) its set of
critical values. We recall that asymptotic values are points y ∈ Y for which there
exists a continuous function γ : [0,+∞[→ X going to X’s infinity (i.e. eventually
avoiding all compact) with g(γ(t)) −→

n→+∞
y. Note that the set of asymptotic values

depends on which set Y is being considered: replacing Y by a Riemann surface that
contains it happens to increase the set of asymptotic values of f . Taking Y = C, we
have

1. Va(hσ) = ∅,
2. Vc(hσ) = (σ + z0) + Z.

and therefore,
1. Va(β) = ∅,
2. Vc(β) = Z.
We will use the following well known property:

Proposition 1. — Assume f : X → Y is an analytic map between Riemann sur-
faces. If V is a simply connected connected open subset of Y that contains no asymp-
totic value and no critical value, then for all connected component U of f−1(V ),
f : U → V is an analytic isomorphism.

2.4. About the cycles of β̂. — Apart from the upper end of the cylinder, the
cycles of β̂ are all analytic (meaning β̂ is analytic in a neighborhood of the cycle)
since they are either equal to the lower end or contained in the half plane “ Im z < 0”.

Lemma 1. — The lower end of the cylinder is repelling for β̂.

Proof 1. — It is known that the product of multipliers of both ends of ĥσ (which is
independent of σ) has modulus > 1 (see for instance [BuEp]). Therefore, since the
upper end is neutral, the lower end is repelling. Now, since there is a topological
characterization of repelling points, this implies β̂ is also repelling at this point.

Proof 2. — We can give a specific proof in our case: Let U be the connected compo-
nent of the preimage of the half plane H = “ Im z” < 0 whose projection by π : C→
C/Z is a neighborhood of the lower end (hence T1(U) = U). Then according to propo-
sition 1, β̃ : U → L is an isomorphism. Therefore, β̂ : π(U)∪{−i∞} → π(L)∪{−i∞}
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is an analytic isomorphism between two simply connected sets, fixing −i∞. The first
being a strict subset of the second, −i∞ is repelling.

In fact, A. Epstein adapted Fatou-Shishikura’s inequality to a class of maps in-
cluding the horn maps hτ , and since they possess only one critical value, they can
have at most one non repelling cycle. We will not use this result here, but since in
the case of β̃ there is a very simple proof, we will mention it here:

Lemma 2. — All the cycles of β̂ that are not the upper fixed point are repelling.
Therefore the only non repelling cycle of ĥσ is the upper end.

Proof. — Let n be the period, and z ∈ H a point in the cycle. As in proof 2, the
set H contains no critical value of β̃, and proposition 1 implies β̃n is an isomorphism
from a simply connected set U with z ∈ U ( H, to H.

2.5. Definition of a piece: P0. — Remind that 0 is a critical value of β, and
therefore not a critical point (otherwise β would have integer rotation number on
R). Let m ∈ Z be such that β(0) ∈]m,m + 1[. Let V = C]m,m+1[. Let U be
the connected component of β−1(V ) containing 0. By covering properties of β, the
restriction β : U → V is an analytic isomorphism. Let H = “ Im(z) < 0”. Let
P0 = H ∩ U . From 0 ∈ U we know than P0 6= ∅. Therefore,

β̃ : P0 → H

is an isomorphism.

Lemma 3. — The set β̃−1(H) \ (P0 + Z) is at positive distance to R.

Proof. — Recall that the picture is invariant by T1. Now, β being analytic and having
local degree 1 or 3 at points in R/Z, every point in R/Z has a neighborhood W on
which W ∩ β−1(H) ∩H is contained in U mod Z. The claim follows by compactness
of R/Z.

Lemma 4. —
sup
z∈P0

| Im(z)| < +∞

Proof. — (first proof) Since β̂ is defined at −i∞, it implies there is a component U ′

of β̃−1(H) that contains a lower half plane “ Im z < −h1” for some h1 > 0. It is
therefore enough to prove that U ′∩P0 = ∅. Since P0 is also a component of β̃−1(H),
if it intersected U ′, it would be equal to U ′. Therefore, P0 would be invariant by
T1. Studying the situation at the real critical point z = m+ 1 of β shows that there
would be points z0 ∈ P0 and z1 ∈ T1(P0) such that β(z0) = β(z1), which contradicts
injectivity of β : P0 → H.
(second proof) It is well known that π(C\K ′′) is an annulus, separating the two ends
of the cylinder. It does not intersect the closure of H. It therefore separates P0 from
the lower end of the cylinder. The lemma follows.
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2.6. Classification of points of L′′. — What can happen to a point z ∈ L′′ when
it is iterated by β̃? By definition, z never gets to C \K ′′. So either it is eventually
mapped to ∂K ′′, in which case we will say z is of type J (Julia). Or all its iterates
are defined. It also never gets to H, otherwise it would belong to the interior of N ′′,
and thus not to L′′ = ∂N ′′. If it is eventually mapped to R, then it must remain
there, and we will say z is of type R (real). If it belongs infinitely many times to
H \ P0 mod Z, we will say z is of type F (far). Otherwise, it eventualy lands and
remains in P0 mod Z: it will be called of type P .

Therefore, we have decomposed

L′′ = Jt tRt t Ft t Pt

(t means a disjoint union), where Xt means the set of points z ∈ L′′ of type X.

Let us recall that we note b be the restriction of β̃ to the half plane H = “ Im z < 0”,
and that b is analytic on its domain of definition.

2.7. Type J . — The following fact is now well known and is for instance a conse-
quence of [DeUr] or [Ly]

Lemma 5. —

leb J = 0.

Since ψ+ is analytic, J ′ = ψ−1
+ (J) has measure 0. Since S is quasiconformal,

J ′′ = S−1(J ′) also has measure 0. Now,

Jt =
⋃
n∈N

b−n(J ′′).

Since b is analytic,

Proposition 2. —

leb Jt = 0.

2.8. Type R. — Of course, R has measure 0. From

Rt =
⋃
n∈N

b−n(R)

(with the convention that b0(R) = R) it follows that

Proposition 3. —

lebRt = 0.
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2.9. Type F . — For rational maps, there is a theorem of Lyubich [Ly] stating that
the set of points in the Julia set that do not tend to the postcritical set has Lebesgue
measure equal to 0. Here we will give a simple adaptation to the specific case we are
studying.

To see the relation with Ft, note that the postcritical set of β̃ mod Z is R/Z,
and that there exists ε > 0 such that points of type F must infinitely often visit
Hε = “ Im z ≤ −ε” (as follows from lemma 3).

Let H = “ Im z < 0” and let us call U the connected component of β̃−1(H) that is
a neighborhood of −i∞ (when projected to C/Z). Let g be the restriction of β̃ to U .

Let z ∈ Ft and let us prove that z is not a Lebesgue density point of Ft, by providing
arbitrarily small balls that do not intersect Ft, and whose radii are commensurable to
the distance of their centers to z. They are provided by the classical method: taking
univalent branches and applying Koebe’s distortion theorem.

Let us introduce the nest of z: this is the sequence of pieces Pn(z) where Pn(z)
is the connected component containing z of β̃−n(H) = b−n(H). This sequence is
decreasing for inclusion. According to proposition 1, the sets Pn(z) are open and
simply connected and bn : Pn(z)→ H is an analytic isomorphism.

Lemma 6. — For all z ∈ L′′ not of type J , the distance from z to the boundary of
Pn(z) tends to 0 when n −→ +∞.

Proof. — Otherwise, the intersection A of the sets Pn(z) would be a neighborhood
of z, included in N ′′ (since all points z′ ∈ A has infinite orbit that never goes to the
upper half plane). Therefore z would belong to int(N ′′) and thus not to L′′ = ∂N ′′,
which leads to a contradiction.

Claim. — Every point of U is eventually mapped out of U under iteration of b.

Proof. — We defined g as the restriction of β̃ to U . The univalent map g−1 : H → U
commutes with T1, and its quotient, completed by the lower end of the cylinder, is
conjugated by z 7→ exp(−2iπz) to an analytic isomorphism f from the unit disk D
to an open subset W with compact closure in D, with f(0) = 0. In that case, it is
well known that the intersection of the images fn(D) is reduced to {0}. Therefore,⋂
n∈N

g−n(H) = ∅.

Let now z ∈ Ft. The set C\K ′′ is open an contained in H. Its preimages by bn are
of course disjoint from Ft. Therefore, by Koebe’s distortion theorem and lemma 6, it
is enough to find some M such that, infinitely many times, the orbit of z passes at
hyperbolic distance to C \K ′′ in H less than M :

(∀z ∈ Ft) (∃M > 0) (∀N ∈ N) (∃n ≥ N) distH(bn(z),C \K ′′) < M.

The constant M will here be independent of z and be equal to the supremum of
the hyperbolic distance in H to C \K ′′, of points in the set

B = Hε \ g−1(Hε),
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where Hε =
{
z ∈ C

∣∣ Im z ≤ −ε
}

. This supremum is finite, because C \ K ′′ is T1-
invariant and B has imaginary part bounded away from 0 and −∞.

Now, let m ≥ N such that bm(z) ∈ Hε. By the claim(1), there is some n ≥ m such
that bn(z) ∈ B. This yields:

Proposition 4. —

lebFt = 0.

Remark. Since this works for all ε > 0, the measure of the set of points which do
not tend to R is equal to 0: this is Lyubich’s theorem in our particular case.

2.10. Type P . — Let

C =
{
z ∈ P0 mod Z

∣∣ all iterates of z belong to P0 mod Z
}

then, by definition

Pt = L′′ ∩
⋃
n∈N

b−n(C).

From β̃−1(L′′) = L′′ ∩ def β̃, it follows that

b−1(L′′) = L′′ ∩ def b.

Therefore(2),

Pt =
⋃
n∈N

L′′ ∩ b−n(C) =
⋃
n∈N

b−n(L′′ ∩ C).

Let us postpone to the next section the proof of

Lemma 7. —

lebL′′ ∩ C = 0,

from which follows that

Proposition 5. —

lebPt = 0,

which will end the proof of theorem 1.

(1)The claim reads
⋂
n∈N g

−n(H) = ∅, which implies
⋂
n∈N g

−n(Hε) = ∅. Therefore Hε =⋃
n∈N g

−n(B).
(2)In fact, more is true (even if we will not use it): Lavaurs’ versions of Sullivan’s non-wandering the-

orem and of the classification of components, applied to hσ , imply C ⊂ L′′ (an therefore int(C) = ∅).

Indeed, by the absence of non-repelling cycles of ĥ except from the upper end, every component of
int(N ′) is eventually mapped to the Siegel disk at the upper end. By the quasiconformal transfor-

mation S, this turns into an analogous statement for β̂.
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2.11. Proof of lemma 7. — We will endow the lower half-plane H with the hy-
perbolic metrics given by

|dz|
| Im z|

.

Let us state the main lemma

Lemma 8. — There exists M > 1 such that ∀x ∈ R, ∀s ∈]0, 1[, there is a euclidean
ball B = B(z, r) with

1. B ⊂ H,
2. B eventually falls in H under iteration of b, and thus B ∩ C = ∅,
3. r > s/M ,
4. |z − x| < sM .

Asumme we have fixed some height h0 > 0. In terms of hyperbolic metrics in H,
lemma 8 implies that for every point z′ ∈ H with Im z′ > −h0, there is a hyperbolic
ball B′ which is eventually mapped to H under iteration of b, with hyperbolic diameter
C2 and contained in the hyperbolic ball of center z′ and radius C3. The constant C2

depends on M . The constant C3 depends on M and h0.
Now let h0 = supz∈P0

| Im(z)|. By lemma 4, h0 < +∞. For z ∈ C, let rn be the
distance from z to the boundary of the piece Pn(z). For a given n, set z′ = bn(z) and
let B′ be as above. If we pull back B′ by the branch of b−n mapping H to Pn(z),
then according to Koebe’s distortion theorem, B′ is mapped to a set which contains
a euclidean ball B′′ with center within distance < M ′rn to z and diameter > rn/M

′.
The constant M ′ depends on C2, C3, but not on n, z. Note that these balls B′′ are
eventually mapped to H under iteration of b, and thus do not intersect C. Now if
z ∈ C ∩ L′′, then rn −→ 0 (by lemma 6). The balls B′′ then prevent z from being a
density point of C. This proves lemma 7.

2.12. Proof of lemma 8. — For an interval I, |I| will denote its length. Intevals
I and J are called K-commensurable if and only if the quotient of their lengths lies
between 1/K and K.

Let us introduce the dynamical partition: let f be a critical circle map with irra-
tionnal rotation number θ and let c ∈ R/Z be its critical point. Let pn/qn be the
convergents of θ. The partition of R/Z into intervals separated by the points f−k(c),
0 ≤ k < qn+qn+1 is called the dynamical partition at level n. Let us fix by convention
that the intervals are of the form [a, b[. For x ∈ R/Z, we will note In(x) the unique
element of the dynamical partition at level n that contains x.

Le us recall the following (see [Yo])

Theorem (Yoccoz). — The map f : R/Z → R/Z is conjugated to the rotation
Tθ : R/Z → R/Z (by an orientation preserving homeomorphism of R/Z).

In particular, the backward orbit f−k(c) is dense in R/Z.
We will make use of the following theorem of Herman and Swiatek:
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Theorem (Herman, Swiatek, real bounds). — For all critical circle map f with
irrationnal rotation number, there exists K > 1 such that for all n ∈ N, any two
consecutive intervals of the dynamical partition at level n are K-commensurable.

A well known corollary is the following:

Corollary 1. — If, furthermore, the rotation number has bounded type, then there
exists K ′ > 1 such that ∀x ∈ R, ∀` ∈]0, 1[, ∃n ∈ N such that |In(x)| is K ′-
commensurable to `.

The following lemma is purely geometric

Lemma 9. — For all K > 1 there exists M0 > 0 and r0 > 0 such that the following
holds. Assume we are given three intervals [a, b[, [b, c[ and [c, d[ in R, and that touching
intervals are K-commensurable. Let U = C]a,d[. Then, for the hyperbolic metrics on
U , every cone based on a point x ∈ [a, d], with central direction −90◦ and opening
30◦, contains a hyperbolic ball B = BU (z, r), with radius r = r0, and such that the
hyperbolic diameter diamU ([b, c] ∪B) < M0.

The proof is elementary. This would hold if the opening angle is replaced by any
number between 0◦ and 180◦.

Lemma 10. — There is some h1 > 0 such that the set P0 +Z avoids the interior of
the triangle of vertices c, c − a − ih1, and c + a − ih1, where c ∈ R is a real critical
point of β, and a is chosen so that the angle at vertex c is equal to 30◦.

Proof. — This immediately follows from the critical point of β having local degree 3
and β sending R to R increasingly.

Corollary 2. — For the map β, there exists M2 > 0 and r2 > 0 such that ∀n ≥ 2,
for all intervals I of the dynamical partition at level n, there is a euclidean ball
B = B(z, r) eventually mapped to H under iteration of b, with r > r2|I| and d(z, I) <
M2|I|.

Proof. — Let us note I = [b, c[ and let [a, b[ be the previous interval and [c, d[ the next
one, in the dynamical partition at level n. Let us note a = β−m1(u), b = β−m2(u),
c = β−m3(u) and d = β−m4(u), where u is the critical point of β on R/Z. We took
n ≥ 2, therefore qn + qn+1 ≥ 5, so there are at least 4 distinct points defining the
dynamical partition at level n, so the points a, b, c, d are distinct. Thus the mj are
distinct. Let m ∈ N be the least(3) of m1, m2, m3 and m4. Let [a′, b′[, [b′, c′[ and
[c′, d′[ be the image of the three intervals by βm. These are still three consecutive
intervals of the dynamical partition at level n. (Indeed, the image by β of an interval
I in the partition P created by the preimages of the critcal point, from order 0 up
to k − 1, is still in P, unless the k-th preimage of the critical point belongs to int(I),
which for k = qn + qn+1 implies that the critical point bounds I.) Therefore, [a′, b′[
and [c′, d′[ are K-commensurable to [b′, c′[, where K is given by the real bounds. Let
us consider, for the hyperbolic metrics on U = C]a′,d′[, the hyperbolic ball B provided

(3)in fact, we could also take m = min(m2,m3)
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by lemma 9 for the cone based on the critical point. Now, either B is contained in
the triangle provided by lemma 10, and we set B′ = B. If it is not, then n must
be less than some n0 ∈ N (indeed, the size of the three intervals is bounded from
above by a sequence that tends to 0 as n tends to infinity). We then take B′ = the
biggest hyperbolic disk contained in the triangle. Then, there exist constants M1 and
r1 independant of n such that, in both cases, B′ has hyperbolic radius (in U) ≥ r1

and diamU (B′ ∪ [b′, c′]) < M1. Let us now apply the branch g of β−m defined on
U and sending ]a′, d′[ to ]a, d[. This branch exists because U does not contain any
singular value of βm (otherwise, ]a, d[ would contain a point of the form f−k(c) for
some 0 ≤ k < m, which is not the case). The lemma follows using bounded distortion
of g in BU (b′,M1), which contains both B′ and [b′, c′].

Corollaries 1 and 2 give lemma 8.
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