UNIFORMITY OF THE ŚWIA̧TEK DISTORTION FOR COMPACT FAMILIES OF BLASCHKE PRODUCTS

M.R. HERMAN

Translator's note: this document is a sequel to Quasisymmetric conjugacy of analytic circle homeomorphisms to rotations $[\boldsymbol{H}$. Herman wrote it shorlty after $[\underline{H}]$ and as the latter, it was a preliminary version. Thus, I found useful to add a few notes at the end of this document. Here is a short abstract of the article: in [\boldsymbol{H}, Herman proved that an analytic circle homeomorphism with bounded type rotation number is conjugated to a rotation by a quasisymmetric map. Here, he shows that for all compact families of Blaschke products with bounded degree and inducing homeomorphisms of the circle with fixed rotation number, the quasisymmetry constant is bounded.

0 . Introduction

We propose to show that, if $\left(g_{i}\right)_{i \in \mathbb{N}}$ is a sequence of rational fractions that induce on \mathbb{S}^{1} orientation preserving homeomorphisms, and that converge on a neighborhood of \mathbb{S}^{1}, then (theorem $\$ 2$)

$$
\sup _{i} S D\left(\widetilde{g}_{i}\right)<+\infty
$$

(\widetilde{g}_{i} refers to a lift to \mathbb{R} and $S D\left(\widetilde{g}_{i}\right)$ to the Świạtek distortion of \widetilde{g}_{i} defined in $\left.\$ 9\right)$. Świa̧tek proved [S] that for all i

$$
S D\left(\widetilde{g}_{i}\right)<+\infty .
$$

One has to show the uniformity with respect to i. The main difficulty is near the critical points: several critical points in the complex plane may tend to a point.

One must first show that the crossratio distorition stays bounded even if several critcal points converge in $\widehat{\mathbb{C}}$ to a common limit on \mathbb{S}^{1}. It is the object of $\{4$ and 5 (the idea of the proof of 4.2 has been communicated to me by J.C. Yoccoz in 1987). The \S_{3} reduces this to a local problem.

Then, one has to show that the Świątek distortion stays bounded, locally near critical points, even if several ones merge. It is the object of $\$ 6$ The intervals where the Schwarzian derivative is <0 are not a problem. What allows everything to work, is that the total variation of $\log D \widetilde{g}_{i}$ stays bounded on the intervals where $S\left(\widetilde{g}_{i}\right) \geqslant 0$. If theorem \mathbb{S}_{2} is true then one shall be able to prove it. It's easier said than done if one wants to avoid inextricabl ${ }^{1}$ combinatorial problems.

We use the notations of H and at paragraphs 5 and 10 we indicate only the changes that are needed to come to the conclusion.

1. Let $\left(g_{i}\right)_{i \in \mathbb{N}}$ be a sequence of rational Blaschke fractions satisfying

- $\left.g_{i}\right|_{\mathbb{S}^{1}}$ is an orientation preserving homeomorphism;
- degree $\left(g_{i}\right)=d_{i} \leqslant d<+\infty$;

[^0]- $\left(g_{i}\right)$ converges uniformly on $\{1-\varepsilon<|z|<1+\varepsilon\}$ to g, where $\varepsilon>0$ is given. $\left.g\right|_{\mathbb{S}^{1}}$ is necessarily a homeomorphism.

2. Theorem. One has

$$
\sup _{i \in \mathbb{N}} S D\left(\widetilde{g}_{i}\right)<+\infty
$$

where $S D$ refers to the Światek distortion of the lift \widetilde{g}_{i} of g_{i} to the universal cover $\mathbb{R}, \mathbb{R} \xrightarrow{e^{2 \pi i}} \mathbb{S}^{1}$, of \mathbb{S}^{1}. (For the definition of $S D\left(\widetilde{g}_{i}\right)$, see g).

The proof can be found in $\$ 10$
2.1. To prove the theorem, it is enough to draw the conclusion of the theorem for an extracted subsequence $\left(g_{i_{k}}\right), 0<i_{k}<i_{k+1}$ of the sequence g_{i}.

Świątek proved that for all $i, S D\left(\widetilde{g}_{i}\right)<+\infty$. We must prove a uniformity, we may assume $i>k_{0}$.
2.2. Let us remark that.

1. By Cauchy's inequalities, $g_{i} \longrightarrow g$ for the C^{∞} topology.
2. g_{j} has at most $2 d-2$ critical points $\widehat{c}_{1}^{(j)}, \ldots, \widehat{c}_{p}^{(j)}$.
3.1. Up to extracting a subsequence $\left(g_{i_{k}}\right)$ of the sequence $\left(g_{i}\right)$ we may assume that the critical points $\left(\widehat{c}_{j}^{(l)}\right)_{1 \leqslant j \leqslant q}$ of $\left(g_{i_{k}}\right)_{k}$ can be split into $n+1$ disjoint sets $I_{i} \subset\{1, \ldots, q\}$

$$
I_{1} \amalg \cdots \amalg I_{n+1}=\{1, \ldots, q\}
$$

where $\operatorname{Card}\left(I_{j}\right)$ is independent of j and satisfying:
3.2. If $j \in I_{q_{1}}$ and $q_{1} \neq n+1$ then if $k \longrightarrow+\infty$,

$$
\widehat{c}_{j}^{(k)} \longrightarrow z_{q_{1}} \in \mathbb{S}^{1}
$$

with $z_{q_{1}} \neq z_{q_{2}}$ for $q_{1} \neq q_{2}$.
3.3. If $j \in I_{n+1}$,

$$
\operatorname{distance}\left(\widehat{c}_{j}^{(k)}, \mathbb{S}^{1}\right) \geqslant \delta_{1}>0
$$

for a $\delta_{1}>0$ independent of i_{k}.
3.4. For all ${ }^{2} \delta_{2}>0$, we can find $k_{0} \in \mathbb{N}$ such that if $k \geqslant k_{0}$ ther ${ }^{3}$ the disks $\left\{\left|z-z_{q_{1}}\right| \leqslant 2 \delta_{2}\right\}, q_{1}=1, \ldots, n$ are disjoint and $\widehat{c}_{j}^{(k)} \in\left\{\left|z-z_{q_{1}}\right|<\delta_{2} / 2\right\} \forall j \in I_{q_{1}}$.
3.3 and 3.4 imply, using Rouché's theorem

$$
\begin{equation*}
\min _{k \geqslant k_{0}} \min _{z \in \mathbb{S}^{1}-\bigcup_{1}^{n}\left\{\left|z-z_{q_{1}}\right|<\delta_{2}\right\}}\left|D g_{i_{k}}(z)\right| \geqslant \delta_{3}>0 \tag{3.5}
\end{equation*}
$$

where δ_{3} depends on δ_{2} and $\delta_{3} \longrightarrow 0$ if $\delta_{2} \longrightarrow 0$.
3.6. Using 3.4 and assuming $0<\delta_{2} \leqslant \delta_{2}^{\prime}$ for $j=1, \ldots, n$ we can find Möbius transformations h_{1}, \ldots, h_{n} independent of δ_{2}^{\prime} satisfying:

$$
h_{j}\left(z_{j}\right)=0, \quad h_{j}: \mathbb{S}^{1}-\{1 \text { point }\} \rightarrow \mathbb{R}
$$

[^1]and for all $\delta_{2} \leqslant \delta_{2}^{\prime}, h_{j}$ is a diffeomorphism from $\left\{\left|z-z_{j}\right| \leqslant 2 \delta_{2},|z|=1\right\}$ to $[-3 \delta, 3 \delta]$ where δ depends on δ_{2},
\[

$$
\begin{equation*}
\delta \longrightarrow 0 \quad \text { si } \quad \delta_{2} \longrightarrow 0 \tag{3.6.1}
\end{equation*}
$$

\]

Moreover, we may assume that

$$
h_{j}\left(\left\{\left|z-z_{j}\right| \leqslant \delta_{2},|z|=1\right\}\right) \subset[-\delta, \delta] .
$$

3.7. For $1 \leqslant r \leqslant n, r \in \mathbb{N}$, let $\lambda_{r, k} \in \mathbb{S}^{1}$ such that $\lambda_{r, k} g_{i_{k}}\left(z_{r}\right)=z_{r}$.

Assuming δ_{2}^{\prime} is small enough so that $k \geqslant k_{1}$ since $\widehat{c}_{j}^{(k)} \longrightarrow z_{r}$ we have

$$
\begin{equation*}
\lambda_{r, k} \cdot g_{i_{k}}\left(\left\{\left|z-z_{r}\right| \leqslant 2 \delta_{2},|z|=1\right\}\right) \subset\left\{\left|z-z_{r}\right| \leqslant 2 \delta_{2},|z|=1\right\} \tag{3.8}
\end{equation*}
$$

We define $\sqrt{4}_{4}^{5} f_{k}=h_{r} \circ\left(\lambda_{r, k} \cdot g_{i_{k}}\right) \circ h_{r}^{-1}$, that satisfies, for $k \geqslant \sup \left(k_{0}, k_{1}\right)$,

$$
\begin{equation*}
f_{k}([-3 \delta, 3 \delta]) \subset \mathbb{R} \tag{3.9}
\end{equation*}
$$

(3.10) $\quad f_{k}$ is a C^{∞} homeomorphism to its image that converges for the C^{∞} topology to a homeomorphism $f:[-3 \delta, 3 \delta] \rightarrow$ its image.

Moreover, the sequence $\left(f_{k}\right)$ satisfies the following conditions:
3.11 .

$$
D f_{k}(x)=\phi_{k}(x) \prod_{j=1}^{l_{1}}\left(x-c_{j}^{(k)}\right)^{2 q_{j}} \prod_{j=1}^{l_{2}}\left(\left(x-b_{j}^{(k)}\right)^{2}+\left(\varepsilon_{j}^{(k)}\right)^{2}\right)^{p_{j}}
$$

where q_{j}, p_{j} are non negative integers, independent of k,
l_{1}, l_{2} are non negative integers, independent of k, and satisfy $l_{1}+l_{2} \geqslant 1$,
$c_{j}^{(k)} \in[-\delta, \delta]$,
$b_{j}^{(k)} \in[-\delta, \delta]$,
$\varepsilon_{j}^{(k)}>0$,
$c_{j}^{(k)} \longrightarrow 0, b_{j}^{(k)} \longrightarrow 0, \varepsilon_{j}^{(k)} \longrightarrow 0$, if $k \longrightarrow+\infty$,
and the sequence

$$
\left(\log \phi_{k}\right)_{k}: x \in[-3 \delta, 3 \delta] \mapsto \log \phi_{k}(x)
$$

is bounded for the C^{∞} topology (C^{2} will be enough in the sequel) if $k \longrightarrow+\infty$ (this follows from 2.2.1, 3.3, 3.4 using Rouché's theorem).

The sequences $\left(f_{k}\right),\left(\phi_{k}\right), c_{j}^{(k)}, \ldots$, depend on $r=1, \ldots, n$; we will remove this dependence and consider abstractly a sequence $\left(f_{k}\right)_{k \geqslant k_{3}}$ satisfying the conditions (3.9) to 3.11 that we stated above.
4.1. If $\hat{l} \in \mathcal{L}_{1}=\{(a, b, c) \in \mathbb{R}, a<b<c\}$ we set

$$
b(\hat{l})=\frac{b-a}{c-a}
$$

[^2]and if $f: K \rightarrow \mathbb{R}$ is a homeomorphism on its image, where K is a compact interval, we set
$$
|f|_{D_{1}, K}=\sup _{\substack{\hat{l} \in \mathcal{L}_{1}}} \frac{b(f(\hat{l}))}{b(\hat{l})} .
$$
4.2. Proposition. One has
\[

$$
\begin{gathered}
\sup _{k}\left|f_{k}\right|_{D_{1},[-3 \delta, 3 \delta]}<+\infty \\
=\sup _{k} \sup _{-3 \delta<a<b<c<3 \delta} \frac{f_{k}(a)-f_{k}(b)}{a-b} \frac{a-c}{f_{k}(a)-f_{k}(c)}<+\infty .
\end{gathered}
$$
\]

4.3. Proof. (The idea of the proof has be communicated to me by J.C. Yoccoz in 1987).

We set

$$
c-b=s, \quad b-a=s_{1} .
$$

We may (and will) assume that

$$
s_{1}<\frac{s}{2}
$$

since

$$
\begin{gathered}
s_{1} \geqslant \frac{s}{2} \quad \text { implies } \\
\frac{f_{k}(a)-f_{k}(b)}{a-b} \frac{a-c}{f_{k}(a)-f_{k}(c)} \leqslant \frac{s_{1}+s}{s_{1}} \leqslant 3
\end{gathered}
$$

We set $s_{3}=\frac{s}{4\left(l_{1}+l_{2}+1\right)}$, where l_{1}, l_{2} are the integers defined in 3.11. We set

$$
W^{k}=[b, c]-[] b, b+s_{3}\left[\cup\left(\bigcup_{j=1}^{l_{1}}\right] c_{j}^{k}-s_{3}, c_{j}^{k}+s_{3}[) \cup\left(\bigcup_{j=1}^{l_{2}}\right] b_{j}^{k}-s_{3}, b_{j}^{k}+s_{3}[)\right]
$$

We have

$$
\frac{f_{k}(a)-f_{k}(b)}{a-b} \leqslant D f_{k}\left(x_{k}\right)
$$

where

$$
\begin{aligned}
& D f_{k}\left(x_{k}\right)=\sup _{x \in[a, b]} D f_{k}(x) \\
& \frac{f_{k}(c)-f_{k}(a)}{c-a} \geqslant \frac{1}{c-a} \int_{a}^{c} D f_{k}(y) d y \geqslant \frac{1}{c-a} \int_{W^{(k)}} D f_{k}(y) d y \\
& \geqslant \frac{1}{c-a} D f_{k}\left(y_{k}\right) \int_{W^{(k)}} 1 d y \\
& \geqslant D f_{k}\left(y_{k}\right) \frac{s / 2}{s+s_{1}} \geqslant D f_{k}\left(y_{k}\right) / 3
\end{aligned}
$$

where $D f_{k}\left(y_{k}\right)=\min _{y \in W^{(k)}} D f_{k}(y)$.
It is enough to show that

$$
\begin{equation*}
\sup _{k} \frac{D f_{k}\left(x_{k}\right)}{D f_{k}\left(y_{k}\right)}<+\infty \tag{4.4}
\end{equation*}
$$

We have by 3.11

$$
\begin{equation*}
\sup _{k} \log \left(\frac{\phi_{k}\left(x_{k}\right)}{\phi_{k}\left(y_{k}\right)}\right)<+\infty \tag{4.5}
\end{equation*}
$$

We set $p_{k, j}(x)=\left|x-c_{j}^{(k)}\right|$ et $Q_{k, j}(x)=\left(x-b_{j}^{(k)}\right)^{2}+\left(\varepsilon_{j}^{(k)}\right)^{2}$. To get 4.4 since

$$
\frac{D f_{k}\left(x_{k}\right)}{D f_{k}\left(y_{k}\right)}=\frac{\phi_{k}\left(x_{k}\right)}{\phi_{k}\left(y_{k}\right)} \prod_{j=1}^{l_{1}}\left(\frac{p_{k, j}\left(x_{k}\right)}{p_{k, j}\left(y_{k}\right)}\right)^{2 q_{j}} \prod_{j=1}^{l_{2}}\left(\frac{Q_{k, j}\left(x_{k}\right)}{Q_{k, j}\left(y_{k}\right)}\right)^{p_{j}}
$$

it is enough, by 4.5, to show that

$$
\begin{align*}
& \sup _{j, k} \frac{p_{k, j}\left(x_{k}\right)}{p_{k, j}\left(y_{k}\right)}<+\infty \tag{4.6}\\
& \sup _{j, k} \frac{Q_{k, j}\left(x_{k}\right)}{Q_{k, j}\left(y_{k}\right)}<+\infty \tag{4.7}
\end{align*}
$$

We assume

$$
\begin{equation*}
c_{j}^{(k)} \leqslant x_{k} \quad \text { et } \quad b_{j^{\prime}}^{(k)} \leqslant x_{k} \tag{4.8}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left|x_{k}-c_{j}^{(k)}\right| & \leqslant\left|y_{k}-c_{j}^{(k)}\right| \\
\left|x_{k}-b_{j^{\prime}}^{(k)}\right| & \leqslant\left|y_{k}-b_{j^{\prime}}^{(k)}\right|
\end{aligned}
$$

we have

$$
\begin{aligned}
\frac{p_{k, j}\left(x_{k}\right)}{p_{k, j}\left(y_{k}\right)} & \leqslant 1 \\
\frac{Q_{k, j^{\prime}}\left(x_{k}\right)}{Q_{k, j^{\prime}}\left(y_{k}\right)} & \leqslant 1
\end{aligned}
$$

If j satisfies

$$
\begin{equation*}
x_{k} \leqslant c_{j}^{(k)} \leqslant b, \quad x_{k} \leqslant b_{j^{\prime}}^{(k)} \leqslant b \tag{4.9}
\end{equation*}
$$

We have

$$
\left\{\begin{array}{l}
\left|x_{k}-c_{j}^{(k)}\right| \leqslant s / 2 \tag{4.10}\\
\left.\left|y_{k}-c_{j}^{(k)}\right| \geqslant \frac{s}{4\left(l_{1}+l_{2}+1\right)}=s_{3} \quad \text { (cf. the definition of } W^{(k)}\right)
\end{array}\right.
$$

and thus

$$
\frac{p_{k, j}\left(x_{k}\right)}{p_{k, j}\left(y_{k}\right)} \leqslant 2\left(l_{1}+l_{2}+1\right)
$$

We have the same inequalities as 4.10 , replacing $c_{j}^{(k)}$ by $b_{j^{\prime}}^{(k)}$ whence

$$
\frac{Q_{k, j}\left(x_{k}\right)}{Q_{k, j}\left(y_{k}\right)} \leqslant \frac{\frac{s^{2}}{4}+\left(\varepsilon_{j^{\prime}}^{(k)}\right)^{2}}{\frac{s^{2}}{16\left(l_{1}+l_{2}+1\right)^{2}}+\left(\varepsilon_{j^{\prime}}^{(k)}\right)^{2}}=u_{k, j}
$$

and we conclude by using

$$
u_{k, j}-1 \leqslant 4\left(l_{1}+l_{2}+1\right)^{2}
$$

Finally, we consider the j 's such that

$$
\begin{equation*}
b \leqslant c_{j}^{(k)}, \quad b \leqslant b_{j^{\prime}}^{(k)} \tag{4.11}
\end{equation*}
$$

Then

$$
\left\{\begin{array}{l}
\left|x_{k}-c_{j}^{(k)}\right| \leqslant c-a \leqslant \frac{3}{2} s \tag{4.12}\\
\left|y_{k}-c_{j}^{(k)}\right| \geqslant \frac{s}{4\left(l_{1}+l_{2}+1\right)}=s_{3} \quad \text { cf. the definition of } W^{(k)}
\end{array}\right.
$$

and we have the same inequalities as 4.12 remplacing $c_{j}^{(k)}$ by $b_{j^{\prime}}^{(k)}$. We conclude

$$
\begin{aligned}
\frac{p_{k, j}\left(x_{k}\right)}{p_{k, j}\left(y_{k}\right)} & \leqslant 6\left(l_{1}+l_{2}+1\right) \\
\frac{Q_{k, j^{\prime}}\left(x_{k}\right)}{Q_{k, j^{\prime}}\left(y_{k}\right)} & \leqslant 36\left(l_{1}+l_{2}+1\right)^{2}+1
\end{aligned}
$$

4.8, 4.9 and 4.11 exhaust all the cases and we have ideed proved 4.6 and 4.7
4.13. By changing x to $-x$ we obtain:

Proposition. One has

$$
\sup _{k} \sup _{-3 \delta<b<c<d<3 \delta} \frac{f_{k}(d)-f_{k}(c)}{d-c} \frac{d-b}{f_{k}(d)-f_{k}(b)}<+\infty .
$$

5.1. Let us assume that we are under hypotheses of 4.1. We assume that $h: K_{1} \rightarrow K$ and $g: K \rightarrow K_{2}$ are bi-lipschitz homeomorphisms. Then

$$
\begin{equation*}
|g \circ f \circ h|_{D_{1}, K_{1}} \leqslant \operatorname{Lip}(g) \operatorname{Lip}\left(g^{-1}\right) \operatorname{Lip}(h) \operatorname{Lip}\left(h^{-1}\right)|f|_{D_{1}, K} \tag{5.2}
\end{equation*}
$$

5.3. Let $\widetilde{g}_{i_{k}}$ be the lifted sequence.

Proposition. One ha ς^{6}

$$
\sup _{k} \sup _{l \in \mathcal{L}_{1}} D\left(l, \widetilde{g}_{i_{k}}\right)<+\infty
$$

5.4. Proof. By 2.2

$$
\begin{equation*}
\sup _{k}\left\|D \widetilde{g}_{i_{k}}\right\|_{C^{0}}<+\infty \tag{5.5}
\end{equation*}
$$

$\left(\widetilde{g}_{i}\right)$ converges uniformly to $\widetilde{g} \in \mathcal{D}^{0}\left(\mathbb{T}^{1}\right)$ and thus

$$
\begin{equation*}
\widetilde{g}_{i}^{-1} \text { converges uniformly to } \widetilde{g}^{-1} \text {. } \tag{5.6}
\end{equation*}
$$

Let $\varepsilon>0, l=(a, b, c) \in \mathcal{L}_{1}, c-a \geqslant \varepsilon$, then

$$
D\left(l, \widetilde{g}_{i}\right) \leqslant\left\|D \widetilde{g}_{i}\right\|_{C^{0}} \frac{\varepsilon}{\widetilde{g}_{i}(c)-\widetilde{g}_{i}(a)}
$$

and thus using 5.5 and 5.6 for all fixed $\varepsilon>0$

$$
\begin{equation*}
\sup _{i} \sup _{\substack{l \in \mathcal{L}_{1} \\ c-a \geqslant \varepsilon}} D\left(l, \widetilde{g}_{i}\right)<+\infty \tag{5.5bis}
\end{equation*}
$$

Near critical points, we use 5.1 $4.2,3.6$ and 3.8 . The proof of proposition $2, \S 6$ of [H] applies without modification using 2.2 and 3.5, and allows to obtain a uniformy and to conclude.

We obtain by the same arguments and using $\S 6$ of [H]:
5.6bis. Proposition. One has

$$
\sup _{k} \sup _{\mathcal{L}_{2}} D\left(l, \widetilde{g}_{i_{k}}\right)<+\infty ;
$$

which implies with 5.3

$$
\sup _{k} \sup _{\mathcal{L}} D\left(l, \widetilde{g}_{i_{k}}\right)<+\infty .
$$

[^3]6.1. Let $f:[-3 \delta, 3 \delta] \rightarrow \mathbb{R}$ be a homeomorphism ${ }^{8}$ to its image of class C^{ω} (f may have critical points). Let $C(f)=\{x \in[-3 \delta, 3 \delta], D f(x)=0\}$. We define on $[-3 \delta, 3 \delta]-C(f)$ the Schwarzian derivative of f
$$
S(f)=D^{2} \log D f-\frac{1}{2}(D \log D f)^{2}
$$

The set $\Delta=\{x, S(f)(x) \geqslant 0\}$ is compact in $[-3 \delta, 3 \delta]$ and included in $[-3 \delta, 3 \delta]-$ $C(f)$.
6.2. We assume that $\Delta \neq \varnothing$. We can write

$$
\Delta=\bigcup_{j=1}^{p} \Delta_{j}
$$

where Δ_{j} is a compact interval, and $\Delta_{j_{1}} \cap \Delta_{j_{2}}=\varnothing$ if $j_{1} \neq j_{2}$.
6.3. If f is a rational fraction of degree $\leqslant d$ then $S(f)$ is a rational fraction of degree $\leqslant 2(3 d-2)$ and thus $p \leqslant 2(3 d-2)+11^{9}$
6.4. On each Δ_{j} we have $D^{2} \log D f(x)>0$ if $x \in \operatorname{Int}\left(\Delta_{j}\right)$ and thus $\log D f$ is convex on Δ_{j}.
6.5. If $\eta: \Delta_{j} \rightarrow \mathbb{R}$ is a function, we set

$$
\underset{\Delta_{j}}{\operatorname{Osc}}(\eta)=\max _{\Delta_{j}} \eta(x)-\min _{\Delta_{j}} \eta(x)
$$

If $\left(\eta_{i}\right)_{1 \leqslant i \leqslant l}$ is a finite sequence of functions on Δ_{j} we have

$$
\underset{\Delta_{j}}{\operatorname{Osc}}\left(\sum_{1}^{l} \eta_{i}\right) \leqslant \sum_{1}^{l} \operatorname{Osc}\left(\eta_{i}\right)
$$

6.6. Since $\log D f$ is convex on Δ_{j} we have

$$
\operatorname{Var}_{\Delta_{j}}(\log D f) \leqslant 2 \operatorname{Osc}_{\Delta_{j}}(\log D f)
$$

and

$$
\operatorname{Var}_{\Delta}(\log D f) \leqslant 2 \sum_{j=1}^{p} \underset{\Delta_{j}}{\operatorname{Osc}}(\log D f)
$$

where $\operatorname{Var}_{\Delta}$ denotes the total variation on Δ.
6.7. We assume that

$$
\begin{align*}
& D f(x)=\phi(x) \prod_{1}^{l_{1}} P_{j}(x)^{2 q_{j}} \prod_{1}^{l_{2}} Q_{j}(x)^{p_{j}} \tag{6.8}\\
& P_{j}(x)=\left|x-c_{j}\right|, \quad c_{j} \in[-\delta, \delta] \\
& Q_{j}(x)=\left(x-b_{j}\right)^{2}+\varepsilon_{j}^{2}, \quad b_{j} \in[-\delta, \delta] \\
& p_{j} \in \mathbb{N} \text { and the } \varepsilon_{j} \text { are small, } \varepsilon_{j}>0, \text { and } l_{1}+l_{2} \geqslant 1
\end{align*}
$$

We have

$$
\begin{equation*}
D^{2} \log D f(x)=D^{2} \log \phi(x)+\sum_{1}^{l_{1}} \frac{-2 q_{j}}{\left(x-c_{j}\right)^{2}}+\sum_{1}^{l_{2}} 2 p_{j} \frac{\varepsilon_{j}^{2}-\left(x-b_{j}\right)^{2}}{\left(\left(x-b_{j}\right)^{2}+\varepsilon_{j}^{2}\right)^{2}} \tag{6.9}
\end{equation*}
$$

[^4]Let

$$
\begin{equation*}
\Phi_{j}(x)=\frac{\varepsilon_{j}^{2}-\left(x-b_{j}\right)^{2}}{\left(\left(x-b_{j}\right)^{2}+\varepsilon_{j}^{2}\right)^{2}} \tag{6.10}
\end{equation*}
$$

that satisfies

$$
\begin{align*}
& \Phi_{j}(x) \geqslant 0 \Longrightarrow\left|x-b_{j}\right| \leqslant \varepsilon_{j} . \tag{6.11}\\
& \sup _{x} \Phi_{j}(x)=\frac{1}{\varepsilon_{j}^{2}} \tag{6.12}\\
& \Phi(x) \leqslant-\frac{2}{25} \frac{1}{\left(x-b_{j}\right)^{2}}, \text { if }\left|x-b_{j}\right| \geqslant 2 \varepsilon_{j} . \tag{10}
\end{align*}
$$

Let $q>0$. Then there exists $C(q)>0$ such that

$$
\begin{equation*}
\underset{\left|x-b_{j}\right| \leqslant q \varepsilon_{j}}{\operatorname{Osc}}\left(\log Q_{j}\right) \leqslant C(q)=\log \left(1+q^{2}\right) \tag{6.15}
\end{equation*}
$$

(Indeed

$$
\frac{1}{1+q^{2}} \leqslant \frac{\left(x-b_{j}\right)^{2}+\varepsilon_{j}^{2}}{\left(y-b_{j}\right)^{2}+\varepsilon_{j}^{2}} \leqslant 1+q^{2}
$$

if $\left|x-b_{j}\right| \leqslant q \varepsilon_{j}$ and $\left.\left|y-b_{j}\right| \leqslant q \varepsilon_{j}.\right)$
6.16. We assume that δ_{1} is small and $D^{2} \log \phi$ is bounded independently of $\delta<\delta_{1}$. Since $l_{1}+l_{2} \geqslant 1$ we have (using 6.14)

$$
\begin{equation*}
\bigcup_{1}^{p} \Delta_{j} \subset \bigcup_{j=1}^{l_{2}}\left\{\left|x-b_{j}\right| \leqslant 2 \varepsilon_{j}\right\} \tag{6.17}
\end{equation*}
$$

6.18. We consider the points $b_{j} \pm 10 \varepsilon_{j}$ contained in Δ_{k}. Together with the tips of Δ_{k}, these points cut Δ_{k} in at most $2 l_{2}+1$ intervals

$$
\bigcup_{i=1}^{p_{2}} I_{i}^{k}=\Delta_{k}
$$

$\operatorname{Int}\left(I_{i_{1}}^{k}\right) \cap \operatorname{Int}\left(I_{i_{2}}^{k}\right)=\varnothing$, if $i_{1} \neq i_{2}$. By 6.17

$$
\begin{equation*}
\operatorname{Int}\left(I_{i}^{k}\right) \cap\left\{\left|x-b_{j}\right| \leqslant 10 \varepsilon_{j}\right\} \neq \varnothing \tag{6.19}
\end{equation*}
$$

for at least one $j \geqslant 1$.
6.20. Lemma. If we assume 6.19 then

$$
I_{i}^{k} \subset\left\{\left|x-b_{j}\right| \leqslant 10 \varepsilon_{j}\right\}
$$

Proof. $\operatorname{Int}\left(I_{i}^{k}\right) \cap\left\{\left|x-b_{j}\right| \leqslant 10 \varepsilon_{j}\right\}$ is closed in $\operatorname{Int}\left(I_{i}^{k}\right)$. It is open because, by the choice of the tips of I_{i}^{k},

$$
\operatorname{Int}\left(I_{i}^{k}\right) \cap\left\{\left|x-b_{j}\right| \leqslant 10 \varepsilon_{j}\right\}=\operatorname{Int}\left(I_{i}^{k}\right) \cap\left\{\left|x-b_{j}\right|<10 \varepsilon_{j}\right\}
$$

and we conclude by using 6.19.

The essential proposition in the sequel is the following.
6.21. Proposition. We assum ${ }^{11}$ that $l_{2} \geqslant 1, \varepsilon^{\prime}>0$ and

$$
\begin{equation*}
\sup _{-3 \delta \leqslant x \leqslant 3 \delta}\left(|\log \phi(x)|,|D \log \phi(x)|,\left|D^{2} \log \phi(x)\right|\right)=w<\varepsilon^{\prime-1} \tag{6.22}
\end{equation*}
$$

[^5]There exist $\delta_{1}>0,0<\varepsilon_{0}<\varepsilon^{\prime}$ such that if $0<\delta<\delta_{1}, \sup _{j} \varepsilon_{j} \leqslant \varepsilon_{0}$ then

$$
\underset{I_{i}^{k}}{\operatorname{Var}}(\log D f) \leqslant 2 \underset{I_{i}^{k}}{\operatorname{Osc}}(\log \phi)+C
$$

where C is a constant independent of $c_{j}, b_{j^{\prime}}, I_{i}^{k}, \varepsilon_{j^{\prime}}$ and depending only on l_{2} and $p_{j}, 1 \leqslant j \leqslant l_{2}$.
6.23. Proof. According to 6.5 and 6.6 it is enough to bound $\underset{I_{i}^{k}}{\operatorname{Osc}}\left(\log Q_{j}\right)$ and $\underset{I^{k}}{\operatorname{Osc}}\left(\log P_{j^{\prime}}\right)$ from above, with $1 \leqslant j \leqslant l_{2}, 1 \leqslant j^{\prime} \leqslant l_{1}$. We may assume, if δ_{1} is small enough, that 6.16 is satisfied if $\delta<\delta_{1}$.
6.24. Using 6.20 one can find an integer $\nu \geqslant 1$ such that

$$
I_{i}^{k} \subset\left\{\left|x-b_{\nu}\right| \leqslant 10 \varepsilon_{\nu}\right\}
$$

and

$$
\varepsilon_{j} \geqslant \varepsilon_{\nu} \text { if } I_{i}^{k} \subset\left\{\left|x-b_{j}\right| \leqslant 10 \varepsilon_{j}\right\}
$$

We consider the

$$
\begin{equation*}
j \text { 's such that } \varepsilon_{j} \geqslant \varepsilon_{\nu} . \tag{6.25}
\end{equation*}
$$

We want to bound $\underset{I_{i}^{k}}{\operatorname{Osc}}\left(\log Q_{j}\right)$ from above. We consider 2 cases:

1. $\left|b_{j}-b_{\nu}\right| \leqslant 20 \varepsilon_{\nu}$ (we allow $j=\nu$).

We have

$$
I_{i}^{k} \subset\left[b_{j}-c_{2} \varepsilon_{j}, b_{j}+c_{2} \varepsilon_{j}\right]
$$

where $c_{2} \leqslant \frac{30 \varepsilon_{\nu}}{\varepsilon_{j}} \leqslant 30$ and we apply 6.15 to obtain

$$
\begin{equation*}
\underset{I_{i}^{k}}{\operatorname{Osc}}\left(\log Q_{j}\right) \leqslant \log \left(1+c_{2}^{2}\right) \tag{6.26}
\end{equation*}
$$

2. $\left|b_{j}-b_{\nu}\right| \geqslant 20 \varepsilon_{\nu}$.

We have, if $x, y \in\left[u_{1}, u_{2}\right]=I_{i}^{k}$,

$$
\left\{\begin{array}{l}
\left|b_{j}-x\right| \leqslant\left|b_{j}-b_{\nu}\right|+10 \varepsilon_{\nu} \leqslant \frac{3}{2}\left|b_{j}-b_{\nu}\right| \tag{6.26bis}\\
\left|b_{j}-y\right| \geqslant\left|b_{j}-b_{\nu}\right|-10 \varepsilon_{\nu} \geqslant \frac{1}{2}\left|b_{j}-b_{\nu}\right|
\end{array}\right.
$$

6.27. Lemma. Let $c_{3}>0, c_{4}>0, x \neq 0$ and $\varepsilon>0$. Then

$$
\inf \left(1, c_{3} / c_{4}\right) \leqslant \psi(x)=\frac{c_{3} x^{2}+\varepsilon^{2}}{c_{4} x^{2}+\varepsilon^{2}} \leqslant \sup \left(1, c_{3} / c_{4}\right)
$$

Proof.
$\overline{\text { Let } 0}<k \leqslant 1$ with $k c_{3} \leqslant c_{4}$, then $\frac{k}{k} \psi(x) \leqslant \frac{1}{k}$.
Let $0<k \leqslant 1$ with $k c_{4} \leqslant c_{3}$, then $\frac{k}{k} \psi(x) \geqslant k$.
From this, it follows from that if $x, y \in I_{i}^{k}$, using 6.26bis,

$$
\begin{equation*}
\frac{1}{9} \leqslant \frac{Q_{j}(x)}{Q_{j}(y)} \leqslant 9 \Longleftrightarrow \underset{I_{i}^{k}}{\operatorname{Osc}}\left(\log Q_{j}\right) \leqslant \log 9 \tag{6.28}
\end{equation*}
$$

We consider the

$$
\begin{equation*}
j \text { 's such that } \varepsilon_{j}<\varepsilon_{\nu} \text {. } \tag{6.29}
\end{equation*}
$$

We have by definition of ν in 6.24 and 6.20

$$
\operatorname{Int}\left(I_{i}^{k}\right) \cap\left[b_{j}-10 \varepsilon_{j}, b_{j}+10 \varepsilon_{j}\right]=\varnothing
$$

We may assume that we have the following figure, up to a change of the orientation (we a priori allow $u_{2}=b_{j}-10 \varepsilon_{j}$)

By 6.4, 6.9, 6.12 and 6.14, if $x \in I_{i}^{k}, 12$

$$
\begin{aligned}
0 \leqslant D^{2} \log D f(x) & \leqslant \sup _{x} D^{2} \log \phi(x)+\frac{2 \sum_{1}^{l_{2}} p_{j^{\prime}}}{\varepsilon_{\nu}^{2}}-\frac{2}{25} \frac{1}{\left(x-b_{j}\right)^{2}} \\
& \leqslant \\
6.2^{2} & \left(1+2 \sum_{1}^{l_{2}} p_{j^{\prime}}\right) / \varepsilon_{\nu}^{2}-\frac{2}{25} \frac{1}{\left(x-b_{j}\right)^{2}}
\end{aligned}
$$

and thus

$$
\left|x-b_{j}\right| \geqslant c_{5} \varepsilon_{\nu}
$$

where c_{5} is a constant.
From this we deduce using $\left|u_{1}-u_{2}\right| \leqslant 20 \varepsilon_{\nu}$ that

$$
\underset{x \in I_{i}^{l}}{\operatorname{Osc}} \log \left|x-b_{j}\right| \leqslant c_{6}
$$

and conclude using 6.27

$$
\begin{equation*}
\underset{I_{i}^{k}}{\operatorname{Osc}}\left(\log Q_{j}\right) \leqslant c_{7} \tag{6.30}
\end{equation*}
$$

where c_{6} and c_{7} are constants depending only on $\left(p_{l}\right)_{1 \leqslant l \leqslant l_{2}}$.
The same proof as above shows that, if $x \in I_{i}^{k}$,

$$
\left|x-c_{j}\right| \geqslant c_{10} \varepsilon_{\nu}
$$

whence

$$
\underset{x \in I_{i}^{k}}{\operatorname{Osc}}\left(\log \left|x-c_{j}\right|\right) \leqslant c_{9}
$$

which implies that for all $j, \quad 1 \leqslant j \leqslant l_{1}$,

$$
\begin{equation*}
\underset{I_{i}^{k}}{\operatorname{Osc}\left(\log P_{j}\right)} \leqslant c_{8} \tag{6.31}
\end{equation*}
$$

where c_{7} and c_{8} depend only on $\left(p_{i}\right)_{1 \leqslant i \leqslant l_{2}}$. The proposition follows by using 6.5 . 6.6 6.26 6.28, 6.30 and 6.31.

From 6.21 it follows that if $\delta<\delta_{1}$ and $\sup _{j} \varepsilon_{j} \leqslant \varepsilon_{0}$
7. Corollary. One has $\underbrace{13}$

$$
\operatorname{Var}_{\Delta}(\log D f) \leqslant 2 \operatorname{Var}_{\Delta}(\log \phi)+\left(2 l_{2}+1\right) p C
$$

where p is the integer defined in 6.2 and by 6.3

$$
p \leqslant 2(3 d-2)+1
$$

By 6.22 $\operatorname{Var}_{\Delta}(\log \phi) \leqslant w$.

[^6]8.1. Let us be given $\left(l_{i}\right)_{0 \leqslant i \leqslant j-1} \in \mathcal{L}, l_{i}=\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$ such that $\left[l_{i}\right]=\left[a_{i}, d_{i}\right] \subset$ $[-3 \delta, 3 \delta]$ satisfying for all $x \in[-3 \delta, 3 \delta]$
\[

$$
\begin{equation*}
\operatorname{card}\left\{j \in J, x \in\left[a_{i}, d_{i}\right]\right\} \leqslant 5 \text { where } J=\{0, \ldots, j-1\} \tag{8.2}
\end{equation*}
$$

\]

We define

$$
\underset{[-3 \delta, 3 \delta]}{S D}(f)=\sup \prod_{0}^{j-1} D\left(l_{i}, f\right)
$$

the sup being taken over all the $\left(l_{i}\right)_{i \in J}$ and J satisfying 8.2 .
8.3. We consider the sequence $\left(f_{k}\right)_{k \geqslant k_{0}}$ given in 3.7. By using 3.6, 3.6.1 and 3.11 we may assume that 6.22 is satisfied ${ }^{14}$
8.4. Proposition. One has, if $\delta<\delta_{1}$ where δ_{1} is defined in 6.21

$$
\sup _{k} \underset{[-3 \delta, 3 \delta]}{S D}\left(f_{k}\right)<+\infty
$$

Proof. Let us be given $\left(l_{i}\right)_{i \in J}$ satisfying 8.2 . We want to bound from above

$$
\begin{equation*}
\prod_{0}^{j-1} D\left(f_{k}, l_{i}\right) \tag{8.6}
\end{equation*}
$$

independently of $\left(l_{i}\right)_{i \in J}, J$ and k. Let $\Delta^{(k)}$ be associated to f_{k}, as defined in 6.1. Let $J_{1}=\left\{j \in J \mid\left[l_{j}\right] \cap\left\{c_{1}, \ldots, c_{l_{1}}\right\} \neq \varnothing\right\}$. We have

$$
\operatorname{card}\left(J_{1}\right) \leqslant 5 \operatorname{card}\left(\left\{c_{1}, \ldots, c_{l_{1}}\right\}\right)
$$

We bound from above

$$
\begin{equation*}
\prod_{j \in J_{1}} D\left(l_{j}, f_{k}\right) \leqslant c_{1} \tag{8.7}
\end{equation*}
$$

by using 5.6bis. where c_{1}, c_{2}, c_{3} denote constants independent of $J,\left(l_{i}\right)_{i \in J}$ and k.
Let $J_{2} \subset J-J_{1}, J_{2}=\left\{j \in J-J_{1},\left[l_{j}\right] \cap \partial \Delta^{(k)} \neq \varnothing\right\}$ where $\partial \Delta^{(k)}$ denotes the tips of $\Delta^{(k)}$. We have by 6.3

$$
\operatorname{card}\left(J_{2}\right) \leqslant 5(2(3 d-2)+1)
$$

and by using 5.6bis

$$
\begin{equation*}
\prod_{j \in J_{2}} D\left(l_{i}, f_{k}\right) \leqslant c_{2} \tag{8.8}
\end{equation*}
$$

If $j \in J-J_{1} \cup J_{2}$ then

$$
\left[l_{j}\right] \subset[-3 \delta, 3 \delta]-\left(\left\{c_{1}, \ldots, c_{l_{1}}\right\} \cup \partial \Delta^{(k)}\right)
$$

Let $J_{3}=\left\{j \in J-\left(J_{1} \cup J_{2}\right),\left[l_{j}\right] \subset \operatorname{Int} \Delta^{(k)}\right\}$. We bound from above, using $7{ }^{15}$

$$
\begin{equation*}
\prod_{j \in J_{3}} D\left(l_{j}, f_{k}\right) \leqslant e^{10 \operatorname{Var}_{\Delta(k)}\left(\log D f_{k}\right)} \leqslant c_{3} \tag{8.9}
\end{equation*}
$$

and finally

$$
\begin{equation*}
\prod_{j \in J-J_{1} \cup J_{2} \cup J_{3}} D\left(l_{j}, f_{k}\right) \leqslant 1 \tag{8.10}
\end{equation*}
$$

since $S f<0$ on a neighborhood of l_{j} (cf. [H])

$$
D\left(l_{j}, f_{k}\right) \leqslant 1
$$

The proposition follows by multiplying 8.7), ... 8.10.

[^7]9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a homeomorphism that satisfies $R_{p} \circ f=f \circ R_{p}, p \in \mathbb{Z}$, $R_{p}: x \mapsto x+p$, i.e. $f \in \mathcal{D}^{0}\left(\mathbb{T}^{1}\right)$. We consider $\left(l_{i}\right)_{i \in J}, J=\{0,1, \ldots, j-1\}$ satisfying ${ }^{16}$
\[

$$
\begin{equation*}
\forall x \in \mathbb{T}^{1} \operatorname{card}\left\{j, x \in\left[l_{j}\right] \bmod 1\right\} \leqslant 5 \tag{9.1}
\end{equation*}
$$

\]

We define if $f \in \mathcal{D}^{0}\left(\mathbb{T}^{1}\right)$

$$
\begin{equation*}
S D(f)=\sup \prod_{j \in J} D\left(l_{j}, f\right) \in \mathbb{R} \cup\{+\infty\} \tag{9.2}
\end{equation*}
$$

the sup being taken over all the $\left(l_{j}\right)_{j \in J}$ and J satisfying 9.1 . We have if $\lambda \in \mathbb{R}$,

$$
\begin{equation*}
S D(f+\lambda)=S D(f) \tag{9.3}
\end{equation*}
$$

and if $h \in \mathcal{D}^{1}\left(\mathbb{T}^{1}\right)$ such that $\operatorname{Var}_{\mathbb{T}^{1}}(\log D h)=V<+\infty$ ther ${ }^{17}$

$$
\begin{equation*}
S D\left(h \circ f \circ h^{-1}\right) \leqslant e^{20 V} S D(f) \tag{9.4}
\end{equation*}
$$

If K is an interval $[u, v], u \neq v$ and if f is a homeomorphism to its image, then we define $S_{K} D(f)$ as we did in 9.2

$$
\begin{equation*}
S_{K} D(f+\lambda)=S_{K} D(f) \tag{9.5}
\end{equation*}
$$

and if $g: K_{1} \rightarrow K$ and $h: K \rightarrow K_{2}$ are $C^{1+\text { bounded variation }}$ diffeomorphisms

$$
\begin{equation*}
S_{K_{1}} D(h \circ f \circ g) \leqslant C(g, h) S_{K} D(f) \tag{9.6}
\end{equation*}
$$

where $C(g, h)<+\infty$ is a constant independent of g and h.
10. Proof of theorem $\S 2$.

By 2.1 it is enough to prove

$$
\sup _{k} S D\left(\widetilde{g}_{i_{k}}\right)<+\infty .
$$

The proof is the same as that of [H, p. 15 à $18{ }^{18}$. We have a uniformity (c.f. 5.6bis) for $\sup _{l \in \mathcal{L}} D\left(l, \widetilde{g}_{i_{k}}\right)$ and near critical points the inequality follows from 8.4 using 9.6 and $3 .\left.\right|^{9}$. The uniformity of the variation of $\log D \widetilde{g}_{i_{k}}$ on $[0,1]-U_{\varepsilon}$ (notation from $[\mathrm{H}]$) follows from 2.2 and 3.5 .
11. Let α be a bounded type number and g_{i} a sequence satisfying the hypotheses of 1. We assume that $\rho\left(\widetilde{g}_{i}\right)=\alpha$. We have shown in [H] that

$$
\begin{gathered}
\widetilde{g}_{i}=\widetilde{h}_{i} \circ R_{\alpha} \circ \widetilde{h}_{i}^{-1}, h_{i} \in \mathcal{D}^{\mathrm{qs}}\left(\mathbb{T}^{1}\right), \widetilde{h}_{i}(0)=0 \text { et } \\
\left|\widetilde{h}_{i}\right|_{\mathrm{qs}} \leqslant C\left(\alpha, S D\left(\widetilde{g}_{i}\right)\right)
\end{gathered}
$$

where C is a constant depending only on α and on $S D\left(\widetilde{g}_{i}\right)$. It follows from the proof in [H] and from 2 that

$$
\sup _{i} C\left(\alpha, S D\left(g_{i}\right)\right)<+\infty
$$

[^8]12. We extend \widetilde{h}_{i} into a K_{i}-quasiconformal homeomorphism $\widetilde{H}_{i}: \mathbb{C} \rightarrow \mathbb{C}$ satisfying
\[

$$
\begin{align*}
& K_{i} \leqslant 2\left(C\left(\alpha\left(S D\left(\widetilde{g}_{i}\right)\right)\right)^{2}\right. \\
& \widetilde{H}_{i}(z+(1,0))=(1,0)+\widetilde{H}_{i}(z) \quad \forall z ; \tag{12.1}\\
& \left.\widetilde{H}_{i}\right|_{\mathbb{R}}=\widetilde{h}_{i} .
\end{align*}
$$
\]

For this, it is enough to take the Beurling Ahlfors extension

$$
\widetilde{H}_{i}(x+i y)=\frac{1}{2} \int_{0}^{1}(h(x+y t)+h(x-y t)) d t+\frac{i}{2} \int_{0}^{1}(h(x+y t)-h(x-y t)) d t .
$$

Using 12.1 , by $z \in \mathbb{C} \mapsto e^{2 \pi i z} \in \mathbb{C}$ and by passing to the quotient, \widetilde{h}_{i} projects to $h_{i}: \mathbb{S}^{1} \rightarrow \mathbb{S}$

$$
\text { and } \widetilde{H}_{i} \text { to } H_{i}: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}
$$

where H_{i} is a K_{i}-quasiconformal homeomorphism satisfying

$$
\begin{array}{ll}
& H_{i}(0)=0 ; \\
& \left.H_{i}\right|_{\mathbb{S}^{1}}=h_{i} \\
\text { and } & \sup _{i} K_{i}<+\infty .
\end{array}
$$

Moreover $\left.H_{i} \circ r_{\alpha} \circ H_{i}\right|_{\mathbb{S}^{1}} ^{-1}=g_{i}$ with $r_{\alpha}(z)=e^{2 i \pi \alpha} z$.
13. Let $d \in \mathbb{N}, d \geqslant 2$. Let
$\mathcal{H}_{d}=\left\{g(z)=\lambda z^{d} \prod_{i=1}^{d-1} \frac{1-\bar{a}_{i} z}{z-a_{i}}, 0<\left|a_{i}\right|<1,|\lambda|=1,\left.g\right|_{\mathbb{S}^{1}}\right.$ is a homeomorphism $\}$.
14. Proposition. One has

$$
\sup _{g \in \mathcal{H}_{d}}\left(S D\left(\left.\widetilde{g}\right|_{\mathbb{S}^{1}}\right)\right)<+\infty
$$

where $\left.\widetilde{g}\right|_{\mathbb{S}^{1}}: \mathbb{R} \rightarrow \mathbb{R}$ denotes the lift of g to \mathbb{R}.
15. Lemma. Let $\left(g_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{H}_{d}$ be a sequence and $a^{(j)}=\left(a_{1}^{(j)}, \ldots, a_{d-1}^{(j)}\right) \in\left(\mathbb{D}^{*}\right)^{d-1}$ where

$$
g_{j}(z)=\lambda_{i} z^{d} \prod_{k=1}^{d-1} \frac{1-\bar{a}_{k}^{(j)} z}{z-a_{k}^{(j)}}
$$

then

$$
\sup _{j}\left|a_{k}^{(j)}\right|<1 .
$$

${ }^{(20)}$
This lemma has been known to the author since december 1988.
Proof. Let us work by contradiction. Let $a^{\left(j_{k}\right)}$ be a subsequence such that

$$
\sup _{k}\left|a^{\left(j_{k}\right)}\right|=1,
$$

[^9]up to another extraction and up to reordering the sequence $a_{1}^{\left(j_{k}\right)}, \ldots, a_{d-1}^{\left(j_{k}\right)}$ we may assume that $a^{\left(j_{k}\right)} \longrightarrow b \in \overline{\mathbb{D}}^{d-1}$,
\[

$$
\begin{aligned}
& b=\left(b_{1}, \ldots, b_{q}, \ldots, b_{d-1}\right) \\
& \left|b_{j}\right|=1 \text { if } 1 \leqslant j \leqslant q \\
& \sup \left|b_{j}\right|<1 \text { if } q<j \leqslant d-1
\end{aligned}
$$
\]

We may well assume that $\lambda_{j}=1$. On $\widehat{\mathbb{C}}-\left\{b_{1}, \ldots, b_{q}, 0, \infty\right\}, g_{i_{k}} \longrightarrow g$ converges locally uniformly

$$
\begin{gathered}
g(z)=z^{d_{1}} \prod_{j=1}^{q}\left(-\bar{b}_{j}\right) \prod_{j \in J} \frac{1-\bar{b}_{j} z}{z-b_{j}} \\
J=\left\{k, b_{k} \neq 0, k>q\right\} \\
d_{1}=d-(d-1-\operatorname{card}(J)-q)=1+q+\operatorname{card}(J)>1+\operatorname{card}(J)
\end{gathered}
$$

$\left.g\right|_{\mathbb{S}^{1}}$ has degree $q+1>1$.
Let $z_{0} \in \mathbb{S}^{1}-\left\{b_{1}, \ldots, b_{q}\right\}$ and λ_{k} be such that

$$
\lambda_{k} g_{i_{k}}\left(z_{0}\right)=z_{0}, \quad\left|\lambda_{k}\right|=1
$$

Up to subsequences extractions we may assume that $\lambda_{k} \longrightarrow \lambda$ if $k \longrightarrow+\infty$. Since $G_{k}=\lambda_{k} g_{i_{k}}$ is a sequence of homeomorphisms satisfying $G_{k}\left(z_{0}\right)=z_{0}$ by Helly's theorem ${ }^{21}$, since G_{k} converges on $\mathbb{S}^{1}-\left\{b_{1}, \ldots, b_{q}\right\}$ we conclude that $\lambda g: \mathbb{S}^{1}-$ $\left\{z_{0}\right\} \rightarrow \mathbb{S}^{\perp}-\left\{z_{0}\right\}$ is monotonic non-decreasing, and since λg is continuous, λg is a homeomorphism, which contradicts the fact that λg has degree $\geqslant 2$.

16. Proof of proposition 14 .

If $\sup _{g \in \mathcal{H}_{d}} S D(\widetilde{g})=+\infty$ we can find a sequence $\left(g_{i}\right)_{i \in \mathbb{N}}$ such that $g \in \mathcal{H}_{d}$

$$
\sup _{i} S D\left(\widetilde{g}_{i}\right)=+\infty
$$

Up to extracting a subsequence $g_{i_{k}}$ we may assume that $a^{\left(i_{k}\right)}$ converges to an element b of $\overline{\mathbb{D}}^{d-1}$. By the previous lemma $b \in \mathbb{D}^{d-1}$. The hypotheses of 1 are satisfied for the sequence $\left(g_{i_{k}}\right)$ and by 2

$$
\sup _{i} S D\left(\widetilde{g}_{i}\right)=+\infty \quad \text { is not possible. }
$$

16.1. Remark. 14 and lemma 15 are false if we do not restrict to Blaschke products of the particular form that we considered in 13 .

Example

$$
g_{t}(z)=\frac{z-t}{1-\bar{t} z} \quad|t|<1, t \longrightarrow 1
$$

If we had $\sup S D\left(\widetilde{g}_{t}\right)<+\infty, \widetilde{g}_{t}$ and \widetilde{g}_{t}^{-1} would be uniformly k-quasisymmetric and thus if $t_{i} \xrightarrow{t} 1, \widetilde{g}_{t_{i}}-\widetilde{g}_{t_{i}}(0)$ would have non constant limit values. For this example 17 is false if we require ${ }^{22}$ that $H_{g_{t}}(0)=0$.

[^10]17. Corollary. Let α be a bounded type number and $\mathcal{H}_{d, \alpha}=\left\{g \in \mathcal{H}_{d}, \rho(g)=\right.$ $\alpha \bmod 1\}$. If $H_{g}: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ is the $K\left(H_{g}\right)$-quasiconformal homeomorphism that we defined in 12, then
$$
\sup _{g \in \mathcal{H}_{d, \alpha}} K\left(H_{g}\right)<+\infty
$$

This follows at once from 12

References

[H] M.R. Herman. Conjugaison quasi symétrique des homéomorphismes analytiques du cercle à des rotations, manuscript, 1987.
[S] G. Świa̧tek. Rational rotation numbers for maps of the circle, to appear in CMP 23

Notes

Structure of the article.
-§0 introduction
-§1 and $\S 2$ hypothese and statement of the main theorem: the Światek distortion stays bounded; some remarks
-§3 extraction of a subsequence, expression into a local form at critical points of the limit

- $\S 4$ and $\S 5$ control of the crossratio distortion under one iterate
§4 local problem
$\S 5$ global problem
- $\S 6$ to $\S 9$ control of the Światek distortion (product of the crossratio distortions on an almost disjoint set of intervals of \mathbb{R} / \mathbb{Z})
$\S 6$ and $\S 7$ statement and proof of a key proposition; this is the proposition that allows the adaptation of $[\mathrm{H}]$ to families of functions; it states that the total variation of the logarithm of the standard derivative on the union of the intervals where the Schwarzian derivative is non negative stays bounded
§8 local problem
$\S 9$ global problem
- $\S 10$ end of the proof of the main theorem
-§11 to $\S 17$ applications
$\S 11$ link with the constant of quasisymmetry of the conjugacy to the rotation
$\S 12$ link with the constant of quasiconformality of the Ahlfors-Beurling extension
$\S 13$ definition of a class \mathcal{H}_{d} of Blaschke products
$\S 15$ proof that \mathcal{H}_{d} is a compact class
$\S 14, \S 16$ and $\S 17$ application of the main theorem to \mathcal{H}_{d}, remarks
Reminder of some definitions from [H]:

$$
D(l, f)=\frac{b(f(l))}{b(l)}
$$

where

$$
l \in \mathcal{L}=\left\{(a, b, c, d) \in \mathbb{R}^{4}, a<b<c<d\right\}
$$

and

$$
b(l)=\frac{b-a}{c-a} / \frac{d-b}{d-c}
$$

[^11]is the crossratio. Also the following definitions are made there:
\[

$$
\begin{aligned}
& \mathcal{L}_{1}=\left\{(a, b, c,+\infty) \in \mathbb{R}^{4}, a<b<c\right\} \\
& \mathcal{L}_{2}=\left\{(-\infty, b, c, d) \in \mathbb{R}^{4}, b<c<d\right\} \\
& \forall l \in \mathcal{L}_{1}, b(l)=\frac{b-a}{c-a} \\
& \forall l \in \mathcal{L}_{2}, b(l)=\frac{d-c}{d-b}
\end{aligned}
$$
\]

Illustration of $\$ 3.4$.

The critical points of g_{k} are either at distance $\geqslant \delta_{1}$ from \mathbb{S}^{1}, or sit within the gray disks. The latter are centered at the critical points of the limit map g.

[^0]: 1_{tn} : I am not sure of the translation

[^1]: $2_{\text {tn: }}$ sufficiently small
 3^{tn} : See the illustration at the end of the article

[^2]: ${ }^{4}$ tn: Note that this is not any more a dynamical system. Indeed, the $\$ 34$ and 5 study the crossratio distortion under one iterate of g_{k}.
 ${ }^{5}$ tn: A reason why Herman preferred this change of variables to $z \mapsto e^{2 i \pi z}$ is that he bounded the Światek distortion of f_{k} in terms of, among others, the number of intervals where the Schwarzian derivative $S f_{k}$ is non-negative, number he bounded in terms of the number of zeroes of the Schwarzian derivative. With his definition, f_{k} remains a rational fraction, with the same degree as f, whence a bound on the number of zeroes of $S f_{k}$. But this is not the essential point.

[^3]: ${ }^{6} \mathrm{tn}$: See the notes at the end of the article for the definition of $D\left(l, \tilde{g}_{i_{k}}\right)$.
 7_{tn} : indeed we pass from $\widetilde{g}_{i_{k}}$ to f_{k} by a change of variable (exponential then Möbius map)

[^4]: ${ }^{8}$ tn: increasing
 9_{tn} : these bounds can be enhanced

[^5]: 10 tn: entry 6.13 has been removed.
 11_{tn} : We are under the hypotheses of 6.7

[^6]: ${ }^{12} \mathrm{tn}$: in the third term of the right hand side of 6.9 i.e. $\sum_{j^{\prime}=1}^{l_{2}} 2 p_{j} \Phi_{j^{\prime}}(x)$, the positive terms require $\left|x-b_{j^{\prime}}\right|<\varepsilon_{j^{\prime}}$ by 6.11 and thus by $6.20 I_{i}^{k} \subset\left\{\left|x-b_{j^{\prime}}\right|<10 \varepsilon_{j^{\prime}}\right\}$ and thus by $6.24 \varepsilon_{j^{\prime}} \geqslant \varepsilon_{\nu}$ whence by $6.12 \Phi_{j^{\prime}}(x) \leqslant \frac{1}{\varepsilon_{\nu}^{2}}$
 ${ }^{13} \mathrm{tn}$: the constant C is that of 6.21 and also depends on l_{2}, and on the p_{j} 's defined in 6.7

[^7]: 14 tn: with a uniform ε^{\prime}
 15 tn : see [H], section 9, part J_{3} of the proof of theorem $\S 2$

[^8]: ${ }^{16}$ tn: We want in fact that $\operatorname{card}\left\{(j, k), x+k \in\left[l_{j}\right]\right\} \leqslant 5$. If we require that the length of the l_{j} is <1, then it is equivalent.
 ${ }^{17}$ tn: Indeed, on one hand $\forall f, g, S D(f \circ g) \leqslant S D(f) S D(g)$, on the other hand $\forall h, S D(h) \leqslant$ $e^{10 \operatorname{Var}_{\mathbb{T}^{1}}(\log D h)}$, see the reference cited in note 15
 ${ }^{18} \mathrm{tn}$: These page numbers refer to the manuscript. They correspond to the proof of theorem 2 of [H].
 ${ }^{19} \mathrm{tn}$: indeed we pass from $\widetilde{g}_{i_{k}}$ to f_{k} by a change of variable (exponential then Möbius map)

[^9]: ${ }^{20} \mathrm{tn}$: The degree may drop at the limit if one of the $a_{k} \longrightarrow 0$.

[^10]: ${ }^{21} \mathrm{tn}$: Helly's theorem: let I be an interval and \mathcal{F} a family of functions from I to \mathbb{R}. Assume that $\exists M, N>0$ such that $\forall f \in \mathcal{F},|f| \leqslant M$ and $\operatorname{Var}(f) \leqslant N$. Then we can extract from \mathcal{F} a sequence f_{n} that converges at every point of I to a function f satisfying the same inequalities.
 ${ }^{22}$ tn: i.e. we do not take the Ahlfors-Beurling extension any more but we require instead that $H_{g_{t}}(0)=0$; note that on this example, which is a Möbius map, the conjugacy from $\lambda_{t} g_{t}$ to the rotation $z \mapsto e^{2 i \pi \alpha} t$ is itself a Möbius map, thus admits an extension $H_{g_{t}}$ which is conformal: $K\left(H_{g_{t}}\right)=1 \ldots$

[^11]: ${ }^{23}$ tn: Published: Comm. Math. Phys., 119 (1988) 109-128.

