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From §1 to §13 we give a few generalities on the quasi symmetric conjugacy to
rotations of circle diffeomorphisms. The main result is Theorem 1 in §1, which is
essential for Theorem 2.

Theorem 2 allows to prove that if f ∈ D∞(T1) has property A0 (defined in §7)
then ther exists λ ∈ R such that fλ = f + λ is quasi symetrically conjugated to a
translation Rα : x 7→ x+ α (α ∈ R−Q):

f = h ◦Rα ◦ h−1, h ∈ Dqs(T1)

Date: 1986?
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2 M.R. HERMAN

but h is not of class C2 (equivalently, by [H,IV.4]1, h /∈ D2(T1)).
Using in §22 the construction of Étienne Ghys [G] the theorem allows to prove

that there exists many rational maps having Siegel singular disks whose boundary
is a quasi circle that does not contain critical points, in particular there exists
α ∈ R−Q such that this is the case for

z 7→ e2πiα(z + z2). (Theorem 3 §22.1)

Of course, we also obtain singular rings (§23) with similar properties, and we
leave to teratology enthusiast reader to build, using quasicircles, one’s own fantastic
zoology, for instance using the constructions of M. Shishikura [S].

The construction of Ghys proves that the result of E. Ghys [G] and those of [H2]
require arithmetic conditions on the rotation numbers (§22.12 to §22.16).

For a survey on singular domain, see [H3].

Notations

We denote T1 = R/Z and translations (or rotations) of R or T1 by Rα(x) = x+α.
We denote by S1 =

{
z ∈ C, |z| = 1

}
the circle and by D =

{
z ∈ C, |z| < 1

}
the

unit disk in C.
The universal cover group of Cr diffeomorphisms, r ∈ N ∪ {∞, ω} is denoted

Dr(T1) =
{
f ∈ Diffr+(R), f ◦Rp = Rp ◦ f, p ∈ Z

}
where Diffr+(R) is the group of diffeomorphisms of R, increasing and of class Cr (by
a C0 diffeomorphism we mean a homeomorphism and Cω denotes the R-analytic
class).

If r ∈ N∪{∞, ω}, Cr(T1) denotes the functions from R to R that are Z-periodic
and of class Cr.

If r ∈ N and φ ∈ Cr(T1) then Drφ denotes the rth derivative of φ with the
convention that D0φ = φ. We endow R with the standard metric and the properties
Lipschitz continuous and Hölder continuous always refer to this metric. If r ∈ N,
C1+Lip means that the rth derivative is Lipschitz.

If φ ∈ C0(T1), ∥∥φ∥∥
C0 = sup

θ∈R

∣∣φ(θ)
∣∣

and L∞ = L∞(T1,R, dθ) and ‖ ‖L∞ the norm defined by the essential supremum.
A number α ∈ R is called of bounded type if there exists γ > 0 such that for all

p/q ∈ Q, we have ∣∣∣α− p

q

∣∣∣ > γ

q2

and if p/q ∈ Q, the convention is that q > 1 and p and q are mutually prime.
If S ⊂ C is a subset, we denote by ∂S its boundary.

1. Let h ∈ D0(T1), h is called a quasi symmetric homeomorphism if there exists
M > 1 such that for all x ∈ R and t ∈ R∗ we have

(1)
∣∣h∣∣

qs
= sup
x,t 6=0

(
h(x+ t)− h(x)

h(x)− h(x− t)

)
6M

1TN : i.e. by the theorem of Gottschalk and Hedlund, but I think there is a simpler argument: if h′

vanishes at one point then it must vanish on its orbit therefore on a dense set and thus everywhere by
continuity, which is absurd.
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or equivalently
1

M
6
h(x+ t)− h(x)

h(x)− h(x− t)
6M ∀x ∈ R, ∀t 6= 0.

2. Let Dqs(T1) =
{
h ∈ D0(T1), h is a quasi symmetric homeomorphism

}
.

The set Dqs(T1) is a group because2 (1) is equivalent to

For all C > 1, there exists M(C) > 1, non-decreasing as a function of C, such
that all adjacent intervals I1 = [a, b], I2 = [b, c], a < b < c satisfying

(2)
1

C
6
|I1|
|I2|
6 C satisfy

1

M(C)
6
|f(I1)|
|f(I2)|

6M(C)

where |I1| = |b− a| (its length).

Indeed, if we assume t = b− a < c− b (the other case is analogous) we get, if

Jk = [b+ (k − 1)t, b+ kt], k = 1, 2, . . .

then |f(J1)|/|f(I1)| 6M , |f(Jk+1)|/|f(Jk)| 6M thus

|f(Jk)|/|f(I1)| 6Mk

but
l⋃

k=1

Jk ⊃ I2, l = [C] + 1

whence
|f(I2)|
|f(I1)|

6M
M l − 1

M − 1
.

We get |f(I2)|/|f(I1)| > |f(J1)|/|f(I1)| > 1/M which proves (2).

3. If h verifies (1) then by [A] or [L]

h(x+ t)− h(x) 6

(
M

M + 1

)n
, when 0 6 t 6 2−n.

This implies that the set of homeomorphisms h that satisfy (1) with M fixed and
h(0) = 0 is compact for the topology of uniform convergence and that each h ∈
Dqs(T1) is a Hölder-continous homeomorphism (i.e. h−Id ∈ Cβ(T1) and h−1−Id ∈
Cβ(T1) where 0 < β < 1 depends only on the constant M).

4. If h verifies (1) then it it the same for S1 ◦ h ◦ S2 where S1 and S2 are affine
maps (i.e. x 7→ ax+ b).

5. We project R→ S1 by t 7→ e2πit and h ∈ D0(T1) induces a homeomorphism h on
S1. The Ahlfors Beurling theorem ([A] or [L]) claims that h exteds to a quasi con-
formal homeomorphism of D if and only if h is a quasi symmetric homeomorphism
(which also implies that Dqs(T1) is a group).

6. Let f ∈ Dqs(T1), ρ(f) = α ∈ R be its rotation number.

Proposition. The following claims are equivalent:

2TN : Stability by composition indeed naturally follows from (2). Stability by inversion seems to require
a different argument.
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(i) f = h−1 ◦Rα ◦ h with h ∈ Dqs(T1);

(ii) sup
n>1

∣∣fn∣∣
qs

= M < +∞.

Moreover (ii) implies ∣∣h∣∣
qs
6M

Proof. The fact that (i) implies (ii) results from 2. and 4. By [H,IV.5], if n −→ +∞,

hn =
1

n

n−1∑
i=0

(
f i − iα

)
converges uniformly to a map h such that h− Id ∈ C0(T1), satisfying

h ◦ f = Rα ◦ h
(i.e. a semi conjugacy to Rα). But

∣∣hn∣∣qs 6 M and thus h ∈ Dqs(T1) with
∣∣h∣∣

qs
6

M . �
By [H,IV.5], if α ∈ Q, (i) is equivalent to

(iii) fq = Rp.

7. Let f ∈ D0(T1). The map f is said to have property A0 if for all λ ∈ R and all
p/q ∈ Q we have (Rλ ◦ f)q 6≡ Rp. The following examples are drawn from [H,III.3]
and have property A0.

• f = Id +φ where φ extends to an entire map from C to C that is not
constant (for instance φ(θ) = a

2π sin(2πθ), 0 < |a| < 1)

• The homeomorphism that f induces on S1 is the restriction of a rational
map of degree d > 2, see also [H1,IV].

8. It follows from [H,III.5] that if f has property A0, the the closure Kf of the set{
λ, ρ(Rλ ◦ f) ∈ R−Q

}
is modulo 1 a Cantor set.

By [H,XII.2], there exists a Gδ dense subset G of R−Q such that if ρ(Rλ◦f) ∈ G
then by the theorem of Denjoy, f = h ◦ Rα ◦ h−1 with h ∈ D0(T1) but for all
0 < β < 1, h is not a homeomorphism of class Cβ and thus by §3, h is not
a quasi symmetric homeomorphism. We can even replace Cβ by any module of
continuity that is fixed in advance. Examples in 7 show that even if f ∈ Dω(T1),
ρ(f) = α ∈ R−Q, Denjoy’s theorem does not allow in full generality to get a quasi
symmetric homeomorphism.

9. In the sequel, α ∈ (R−Q)∩ [0, 1/2] and α = [a1, a2, . . .] = 1/(a1 + 1/(a2 + . . .))
denotes its continued fraction expansion and (pn/qn)n>0 its convergents: q0 = 1,
p0 = 0, q1 = a1 > 2, p1 = 1 and qn = anqn−1 + qn−2 if n > 2. We recall that (see
for instance [H,V]) if n > 0,

(−1)n
(
α− pn

qn

)
> 0

1

(an+1 + 2)q2n
<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1
6

1

an+1qn2

et
∥∥∥qnα∥∥∥ =

∣∣∣qnα− pn∣∣∣
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where we define
‖x‖ = inf

p∈Z
|x+ p|, x ∈ R.

Moreover
(3) ‖qn−1α‖ = an+1‖qnα‖+ ‖qn+1α‖.

If α = [a1, . . .] satisfies a1 = 1 then 1− α satisfies 1− α = [a1, a2, . . .] with a1 > 2.

10. We start from f ∈ D0(T1), a homeomorphism of class P (cf [H,VI.4]): we
assume f has everywhere a left and a right derivative and that logDf has bounded
variation and we let

V = Var(logDf) = the measure norm of D logDf on T1.

This implies that f and f−1 are absolutely continuous on every compact interval.
If ρ(f) = α the we have Denjoy’s inequality [H,VI.4]

(4)
∥∥ logDf±qn

∥∥
L∞
6 V

which implies Denjoy’s theorem [H,VI.5]. In the sequel, we will let

f̂qn = fqn − pn
and In(x) = [x, f̂qn(x)]

where [x, f̂qn(x)] denotes the compact interval determined by x and f̂qn(x).

11.

Theorem 1. We assume that f satisfies the hypotheses of §10 and that there exists
C > 0 such that for all n > 1 we have

(5)
∥∥ logDfqn

∥∥
L∞
6

C

(2 + an+1)
, n > 0.

Then f = h ◦Rα ◦ h−1, h ∈ Dqs(T1) and we have

(6)
∣∣h∣∣

qs
6 2e2C .

Proof: (5) implies the following inequality almost everywhere for the Lebesgue
measure

e−C 6
a.e.

Dfkqn 6
a.e.

eC , k ∈ Z, |k| 6 2 + an+1

and thus

(7) e−C 6 |f̂kqn(In(x))|/|In(x)| 6 eC , |k| 6 2 + an+1.

Let h be the homeomorphism given by Denjoy’s theorem, uniquely determined if
we impose that h(0) = 0 and satisfying

f = h ◦Rα ◦ h−1.

Let y such that h(y) = x. Inequality (7) implies3

e−2C 6
h
(
y + k‖qnα‖

)
− h(y)

h(y)− h
(
y − k‖qnα‖

) 6 e2C , 1 6 |k| 6 an+1 + 1, k ∈ Z∗.

3TN : Cut the interval [y− k‖qnα‖, y+ k‖qnα‖] in intervals of length ‖qnα‖ and compare the length
of their images to the length of the image of the one corresponding to In(x). In the statement we can
replace 2 + an+1 by 1 + an+1.
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Since ‖qnα‖(an+1 + 1) > ‖qn−1α‖ > an+1‖qnα‖ valid even if n = 0 with the
convention that ‖q−1α‖ = 1, we deduce that4 for all n > 0,

(8)
1

2
e−2C 6

h(y + t)− h(y)

h(y)− h(y − t)
6 2e2C , if ‖qnα‖ 6 |t| 6 ‖qn−1α‖.

It follows that (8) is true for all y and all 0 < t < 1, which proves the theorem. �

12. The following corollary immediately follows from (4).

Corollary. Let f be a homeomorphism of class P such that ρ(f) = α is a bounded
tyle number (i.e. sup

i>1
ai = l < +∞). Then f = h ◦Rα ◦ h−1 where h ∈ Dqs(T1) and∣∣h∣∣

qs
6 2 exp(V (2l + 4))

using the notations of §10, i.e. V = Var(logDf).

13. Example Let λ > 1 and consider the piecewise linear homeomorphism
g ∈ D0(T1) defined by

g(x) = λx, if 0 6 x 6 a = (λ+ 1)−1,

g(x) = 1 + λ−1(x− 1), if a 6 x 6 1,

g(x+ p) = p+ g(x), if p ∈ Z and 0 6 x 6 1.

We choose 0 < b < 1 so that b+ g = f satisfies ρ(f) = α where α is a bounded type
number and thus, by the previous corollary, we obtain

f = h ◦Rα ◦ h−1, h ∈ Dqs(T1), h(0) = 0.

By [H,VI.7], on T1, f mod 1 does not leave invariant any σ-finite measure that is
absolutely continuous with respect to the Haar measure m of T1, hence the unique
probability measure µ on T1 that is invariant by f mod 1 is singular with respect to
m. But µ is the derivative of h in the sense of distributions, from which it follows
that h and h−1 are singular with respect to the Lebesgue measure. For other
examples of quasi symmetric homeomorphisms that are not absolutely continuous,
c.f. [AB] and [P].

14. Choose f ∈ D∞(T1) and assume that f has property A0, defined in §7. We
let5 K = Kf ∩ [0, 1]. Up to replacing f by λ1 + f where λ1 ∈ R, we may assyme
that K ⊂ (0, 1) and {

ρ(Rλ ◦ f), λ ∈ K
}

=
[
− 1

2
,

1

2

]
We let fλ = λ+ f .

15. (Under the assumptions of the previous §)

4TN : It is easy to get a bound that depends ont C, but the precise form that is stated here may
need a few more explanations. To simplify let us assume that t > 0 and let us bound the expression
from above. Let k be the greatest integer so that k‖qnα‖ 6 |t|. Let yj = y + j‖qnα‖. Then
h(y + t) − h(y) 6 h(yk+1) − h(y) and h(y) − h(y − t) > h(y) − h(y−k), whence h(y+t)−h(y)

h(y)−h(y−t) 6
h(yk)−h(y)
h(y)−h(y−k)

+
h(yk+1)−h(yk)
h(y)−h(y−k)

. The first term of the sum is 6 e2C . For the second, according to (7)

the numerator is 6 eC |In(x)| and the denominator is > e−C |In(x)|.
5TN : Kf was defined in §8.
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Theorem 2. There exists λ ∈ K such that:

(i) fλ = g ◦Rα ◦ g−1, g ∈ Dqs(T1), g(0) = 0, α ∈ R−Q ;

(ii) g is not of class C2 (and thus by6 [H,IV] not of class C1+Lip).

15.1 To prove Theorem 2 we need some reminders and preliminary facts. We have

D(Rλ ◦ f) = Df

and thus
Var(logDfλ) = V

is independent of λ.
By [H,VI.6], if y, z ∈ In(x) = [x, f̂qn(x)] then

(9) e−V 6
Df j(y)

Df j(z)
6 eV pour 0 6 j < qn+1.

This results from the fact that the following intervals, taken modulo 1(
fk(In(x))

)
06k<qn+1

have pairwise disjoint interiors [H,V.8.3].
It follows7 that if ξk ∈ In(x) then

(10)
qn+1−1∑
k=0

Dfk(ξk) 6
eV

|In(x)|
= eV

∣∣∣f̂qn(x)− x
∣∣∣−1.

16. Let the irrational numbers αn,l = [a1, . . . , an, an+1 + l, an+2, . . .] with l =
0, 1, . . .. If we assume that

(11) n ≡ 0 mod 2

then (see §9)
pn
qn

< αn,l+1 < αn,l < αn,0

and αn,l has its nth convergent equal to pn/qn.
By [H,III.4], there exists a unique λl ∈ R such that

ρ(fλl
) = αn,l.

For 1. For 0 6 j < qn

(12) f jλl+1
(x) ∈ f jλl

(
In
(
f̂−qnλl

(x)
))
≡
[
f jλl
◦ f̂−qnλl

(x), f jλl
(x)
]
.

Proof. We have λl+1 < λl, so for all j > 1 and all x ∈ R:

f jλl+1
(x) < f jλl

(x).

Suppose by contradiction that for some i < qn and x ∈ R we have

f iλl+1
(x) < f iλl

◦ f̂−qnλl
(x)

thus

f̂qnλl+1
(x) = fqn−iλl+1

◦f iλl+1
(x)−pn < fqn−iλl

◦f iλl+1
(x)−pn < fqn−iλl

(
f iλl
◦f̂−qnλl

(x)
)
−pn = x.

6TN : Gottschalk and Hedlund’s theorem. It implies that if α is irrational and if φ is a L∞ function
on T such that φ ◦Rα − φ is continuous (has a continuous representative), then φ is continuous (has
a continuous representative). Apply this to the derivative of logDg.
7TN : Explanations: let I = In(x). The fk(I) are disjoint. The sum of their lengths is thus 6 1. Now
|fk(I)| =

∫
I Df

k > e−VDfk(ξk) |I|.
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This contradicts
f̂qnλl+1

(x) > x for all x

since pn/qn is the nth convergent of αn,l.

Corollary.

(13)
qn−1∑
j=0

∣∣∣− f jλl+1
(x) + f jλl

(x)
∣∣∣ 6 eV ∣∣f̂−qnλl

(x)− x
∣∣∣∣f̂qn−1

λl
(x)− x

∣∣ .
Proof. By Lemma 1:

A(x) =

qn−1∑
j=0

∣∣f jλl
(x)− f jλl+1

(x)
∣∣ 6 qn−1∑

j=0

∣∣f jλl
(f̂−qnλl

(x))− f jλl
(x)
∣∣

and by the mean value theorem

A(x) 6
qn−1∑
j=0

Df jλl
(ξj)

∣∣f̂−qnλl
(x)− x

∣∣
where

ξl ∈ [f̂−qn(x), x] ⊂ [f̂qn−1(x), x]

and the corollary follows from (10). �

If we replace (11) by
(11’) n ≡ 1 mod 2

then
fλl

< fλl+1

and (13) becomes8

(13’)
qn−1∑
j=0

∣∣f jλl+1
(x)− f jλl

(x)
∣∣ 6 eV |f̂−qnλl

(x)− x|
|f̂qn−1

λl
(x)− x|

.

17. If f = h ◦Rα ◦ h−1 where h ∈ D1+Lip(T1) then

(14)
∥∥ logDfqn

∥∥
C0 6 ‖D logDh‖L∞‖qnα‖ 6

‖D logDh‖L∞
qn+1

since
logDfqn ◦ h = logDh ◦Rqnα−pn − logDh.

For λ ∈ R let9

H̃2(λ) ≡ H̃2(fλ) = sup
(

sup
i∈Z

(∥∥Df iλ∥∥C0

)
, sup
i∈N

(∥∥D2f iλ
∥∥
C0

))
∈ R ∪ {+∞}

We have H̃2(λ) > 1 and H̃2(λ) = 1 implies f = Rλ, λ ∈ R.
By [H,IV.6], fλ is C2 conjugated to Rα if and only if

H̃2(λ) < +∞
and if

H̃2(λ) 6 p+ 1

then we have f = h ◦Rα ◦ h−1 and h satisfies

(15)
1

p+ 1
6 Dh 6 p+ 1 ‖D2(h−1)‖L∞ 6 p+ 1 (cf [H,IV.6.2]).

8TN : This is identical to (13).
9TN : The use of the pair (Z,N) is a shorthand to express that we take the smallest constant C > 0

such that ∀n > 0, ∀x, 1
C
6 |Df iλ(x)| 6 C and |D2f iλ(x)| 6 C.
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Ths implies: ‖D logDh‖L∞ 6 (p+ 1)3 and ‖D2h‖L∞ 6 (p+ 1)4.
All we will use in the sequel is that

fλ = h ◦Rα ◦ h−1 H̃2(λ) 6 p+ 1 implies

h ∈ D1+Lip(T1) (i.e. the diffeomorphisms h of class C1 such that Dh are Lipschitz
continuous) satisfies inequalities (15). This follows from Ascoli’s theorem and from
the fact that

h−1n =
1

n

n−1∑
i=0

(f iλ − iα), if n −→ +∞,

uniformly converges to
h−1 = Id +φ, φ ∈ C0(T1)

satisfying
h−1 ◦ fλ = Rα ◦ h−1.

The inequalities follow from the fact that H̃2(λ) 6 p+ 1 implies 1
p+1 6 Df

i
λ 6 p+ 1

and ‖D2f iλ‖L∞ 6 p+ 1, for all i > 0.

18. Proof of Theorem 2.
We will build numbers µ1, . . . , µp in K, with ρ(fµp

) = αp ∈ [0, 12 ]−Q, associated
to a sequence of integers

2 < k1 < k2 < . . .

such that if αp = [a1,p, a2,p, . . .] denotes the continued fraction expansion of the
numbers αp then

a1,p = 2 p > 1 (to get αp ∈ [0,
1

2
])

(16) an,p = an,p−1 except if n = kp

and
(17) an,p = 1 if n 6= kj 1 6 j 6 p and n>1.

We will prove that we can determine the sequence k1, . . . , kp, . . . , the numbers αp
and a constant satisfying

(18) C0 > 3V + 1 ;

(18’) C0 > 6
∥∥D logDf

∥∥
C0e

V +
1

3
such that for all p we have by induction on p > 1:

(19)p ∀k > 0,
∥∥ logDfqk(αp)

µp

∥∥
C0 6

Cp
2 + ak+1(αp)

where the integers qk(αp) and an+1(αp) are associated to αp ;

(20)p C0 6 Cp = Cp−1 +
1

2p
;

(21)p H̃2(µp) > p ;

(22)p
µp ∈ lp ∩K where lp = [µp−1 − εp, µp−1 + εp] ⊂ lp−1, εp > 0

and we have H̃2(µ) > p, if µ ∈ lp ∩K.
For p = 1, we choose k1 = 3, a1,3 = 1, k2 > 10, l1 = [− 1

2 ,
1
2 ] and we have H2(µ) > 1

if µ ∈ l1.
Denjoy’s inequality (4) shows that10 for all p > 1,

(22’)
∥∥ logDfqk(αp)

µq

∥∥
C0 6

C0

2 + ak+1(αp)
if k 6= k2 − 1, . . . , kp − 1.

10TN : . . . Assuming (17) and (18). Indeed, ak+1(αp) = 1 for the values of k considered here. There
were several equations numbered 22 in the original so I decided to renumber this one 22’.
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19. We will show how to get to Step p+ 1.
For this we will perturb αp into αp+1 = [a1,p+1, . . . , akp+1,p+1, 1, . . .]. We let

n+ 1 = kp+1 and
βj = [b1, . . . , j, 1, 1, . . .]

where

(23)

 bk = ak,p if k 6= n+ 1,

bn+1 = j > 1.

By continuity there exists ε′p+1 > 0, l′p+1 = [µp − ε′p+1, µp + ε′p+1] ⊂ lp such that if
µ ∈ l′p+1 then α = ρ(fµ) has the same convergents (pk/qk) as αp for k 6 kp + 10
and such that we have

(24) ∀i 6 kp,
∥∥ logDfqi(α)µ

∥∥
C0 6

Cp + 2−(p+1)

ai+1(α) + 2
, if µ ∈ l′p+1.

(A) We will assume that kp+1 is big enough (see §9) so that for all j ∈ N∗, if
ρ(fλj ) = βj , then

(25) λj ∈ l′p+1 ∩K.
Since βj is a bounded type number, by [H,IX] we get

fλj = hj ◦Rβj ◦ h−1j , hj ∈ D∞(T1).

We also recall that for all α ∈ R−Q,

(26) qn(α) > 2(n−1)/2.

(B) If kp+1 is big enough then by using (14) we get11

(27)
∥∥ logDfqnλ1

∥∥
C0 6

‖D logDh1‖L∞
qn+1

6
1

(an+1(β1) + 2)(p+ 1)2

(an+1(β1) = 1).

Claim. There is a biggest integer 1 < l < +∞ such that12

(28)
∥∥ logDfqnλl

∥∥
C0 6

1

(l + 2)(p+ 1)2

and thus
(29)

∥∥ logDfqnλl+1

∥∥
C0 >

1

(l + 3)(p+ 1)2
.

Proof. It follows from (27) that (28) holds for l = 1. If (28) were true for all l we
would have λl −→ λ∞, ρ(fλ∞) = β∞ = pn/qn and f satisfies

logDfqnλ∞ ≡ 0

in other words fqnλ∞ = Rpn , which contradicts the assumption that f has property
A0. �

We will consider 2 possibilities:

(30) H̃2(λl) > p+ 1,

or
(31) H̃2(λl) 6 p+ 1.

19.1 If (30) holds then we choose αp+1 = βl. Since the map λ 7→ H̃2(λ) is lower
semi continuous we can find an interval lp+1 ⊂ l′p+1 such that we have (22)p+1.
From (22’), (24) and (28) it follows that (19)p+1 is verified, which shows that,
under Assumption (30), we can pass to Step p+ 1.

19.2 We assume that (31) holds. We choose αp+1 = βl+1.

11TN : Indeed, h1 does not depend on kp+1 = n+ 1 and qn+1 −→ +∞.
12TN : In (27) and below, we can replace the factor (1 + p)2 by a constant. See §21.9.
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Claim. If kp+1 is big enough,

(32) H̃2(λl+1) > p+ 1.

Proof. If we assume that (32) does not hold then by (15) we get

‖D logDhl+1‖L∞ 6 (p+ 1)3

whence by (14) ∥∥ logDfqnλl+1

∥∥
C0 6

(p+ 1)3

an+1(βl+1)qn
.

From (29) we must have

1

(l + 3)(p+ 1)2
6

(p+ 1)3

(l + 1)qn
, l > 1,

in particular
1

2
qn 6 (p+ 1)5.

The integer p is fixed; by (26) this cannot hold
(C) if kp+1 = n+ 1 is big enough.

By contradiction if (C) holds then the claim follows. �

Claim if kp+1 is big enough

(33)
∥∥ logDfqnλl+1

∥∥
C0 6

C0

an+1(βl+1) + 2
=

C0

l + 3
.

Proof. Using (28) we get∥∥ logDfqnλl+1

∥∥
C0 6

∥∥ logDfqnλl+1
− logDfqnλl

∥∥
C0 +

1

4(l + 2)
.

We obtain:

B =
∥∥ logDfqnλl+1

− logDfqnλl

∥∥
C0 =

∥∥∥ qn−1∑
j=0

logDf ◦ f jλl+1
− logDf ◦ f jλl

∥∥∥
C0

6
∥∥D logDf

∥∥
C0

∥∥∥ qn−1∑
j=0

(f jλl+1
− f jλl

)
∥∥∥
C0
.

Using (13) and (13’) we deduce13

B 6 L sup
θ

(
|hl(qnβl − pn + θ)− hl(θ)|

|hl(θ − qn−1βl + pn−1)− hl(θ)|

)
with

L =
∥∥D logDf

∥∥
C0e

V .

By the mean value theorem
hl(qnβl − pn + θ)− hl(θ)

hl(θ − qn−1βl + pn−1)− hl(θ)
=
Dhl(ξ1)

Dhl(ξ2)

‖qnβl‖
‖qn−1βl‖

with
ξ1 ∈ [θ, θ + qnβl − pn], ξ2 ∈ [θ, θ − (qn−1βl − pn−1)] ;

whence

B1 =

∣∣∣∣Dhl(ξ1)

Dhl(ξ2)
− 1

∣∣∣∣ 6 ‖D2hl‖L∞
∥∥ 1

Dhl

∥∥
C0‖qn−1βl‖.

13TN : There is a harmless mistake in some sign: one has to replace in the whole proof qnβl − pn + θ
by pn − qnβl + θ and θ − qn−1βl + pn−1 by θ + qn−1βl − pn−1.
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Using (31) and (15) we get to the conclusion that14

B1 6 (p+ 1)5‖qn−1αp‖ 6 (p+ 1)5
1

qn
.

The integer p is fixed and thus
(D) if kp+1 is big enough

using (26) we get

B1 6
1

2
and

B 6 L
3

2

‖qnβl‖
‖qn−1βl‖

.

It follows from (3) that

B 6
3L

2

1

an+1(βl)
=

3L

2l
.

Finally, using (18’):∥∥ logDfqnλl+1

∥∥
C0 6

3

2

L

l
+

1

4(l + 2)
6

C0

l + 3
.

�

We now conclude using (32) and §19.1 that there exists an interval lp+1 ⊂ l′p+1

such that we have (22)p+1. It follows from (22), (24) and (33) that (19)p+1 is
satisfied.

With the choices (A), (B), (C) and (D) on kp+1 we have shown how to construct
αp+1 such that fµp+1 satisfies (19)p+1 through (22)p+1.

20. End of the proof of Theorem 2.
It follows from Theorem 1 and from (19)p, that for all p > 1, we have

fµp
= gp ◦Rαp

◦ g−1p with gp ∈ D∞(T1), gp(0) = 0

and
(34)

∣∣gp∣∣qs 6 2e2C∞ ,

with
C∞ = sup

p
Cp = C0 + 1.

Let l∞ =
⋂
p>1

lp ∩ K, which is a non-empty compact set. By compactness, if

λ = µ∞ ∈ l∞ ∩K and if g∞ is a cluster value of the sequence (gp)p>1 for the C0

topology (c.f. §3) by passing to a uniform limit we get

fµ∞ = g∞ ◦Rα∞ ◦ g−1∞ with g∞ ∈ Dqs(T1), g∞(0) = 0

and ∣∣g∞∣∣qs 6 2e2C∞

(we use (34) and §3).
It follows from §7 that l∞ is reduced to a point µ∞ ∈ K and ρ(f∞) = α∞ ∈ R−Q

(since f has property A0). This proves part (i) of Theorem 2.
To see that (ii) holds, notice that from (22)p, since µ∞ ∈ lp, we get

H̃2(µ∞) > p, for all p > 1,

and thus H̃2(µ∞) = +∞. Now (ii) follows from §17. �

21. Remarks:

14TN : The number αp must be replaced by pn
qn

.
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21.1 The crucial point of the whole proof is (33).

21.2 If f ∈ Dω(T1) then fµ∞ is the limit of the sequence fµp
where each ρ(fµp

)

is a bounded type number and so by [H,IX] fµp
= gp ◦Rαp

◦ g−1p with gp ∈ Dω(T1).

21.3 We could start from α1 = [a1,1, . . . , a1,k, . . .] ∈ R−Q assuming only

a1,k = 1 if k > k0.

21.4 Without changing anything, we can replace (17) by

1 6 aj,p 6 t if j 6= kq, q 6 p

where t ∈ N∗ is given.
In fact, one can do much better using the following facts:15

(34’)
∥∥f̂qn − Id

∥∥
C0 6 L1(1 + e−V )−n/2

that follows from [H,VIII.2], with L1 = sup(
∥∥f̂q1 − Id

∥∥
C0 ,
∥∥f − Id

∥∥
C0);

(35)
∥∥ logDfqn

∥∥
C0 6 L2

∥∥f̂qn − Id
∥∥1/2
C0

that is Yoccoz’s inequality [Y1], where L2 is a constant that only depends on∥∥D2 logDf
∥∥
C0 . If f ∈ Dr(T1), r > 4, we have even better if we use [Y2].

21.5

Conjecture. Theorem 2 still holds if we replace (i) by16

(i′) fλ = g ◦Rα ◦ g−1 with g ∈ D1(T1).

Using (34’) and (35) it would be enough, by the same proof as in [H,IX.1.6], to
ensure that17

p∑
j=1

∥∥ logDf
qkj

(αp)
µp

∥∥
C0akj+1(αp) 6 Cp

with
∑
p>1

Cp < +∞.

For this, it might be possible to improve (33).

21.6 If ε > 0 is given then there exists η > 0 such that if
∥∥D3f

∥∥
C0 6 η then the

homeomorphism g of (i) satisfies:

(36)
∣∣g∣∣

qs
6 1 + ε.

To see that, we choose k1 very high, we use (34’) and (35) and we replace in
inequality (28) the factor 1

(p+1)2 by 1
(p+t)2 with t fixed but big.

We can choose C0 small,

(20’)p C0 6 Cp+1 6 Cp +
1

2p+t
, t > 1 big

and we replace (19)p by

(19’)p sup
p>j>1

∥∥ logDf
qkj−1(αp)
µp

∥∥
C0 6

C0

akj (αp) + 2
.

To estimate
∥∥ logDfqkµp

∥∥
C0 , if k < k1, we use that η is small, and if k > k1, k 6= kj−1

we use (34’) and (35).

15TN : In the source there are two equations numbered 34.
16TN : D1(T1) denotes the (orientation preserving) C1 diffeomorphisms.
17TN : The author probably meant to write ∀j, ∃Cj , ∀p,

∥∥ logDfqkj
(αp)

µp

∥∥
C0akj+1(αp) 6 Cj with∑∞

1 Cj < +∞.
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Inequality (35) forces l to be very big, which allows in (6) to replace the factor
1/2 by 1 + ε/2.

21.7

Proposition. Let α be a Liouville number. Then there exists f∞ ∈ D∞(T1),
ρ(f∞) = α such that

(i′) f∞ is C1-conjugated to Rα ;

(ii) f∞ is not C2-conjugated to Rα.

The proof is simpler than the proof of Theorem 2. We first need the following
lemma.

Lemma. Let r ∈ N∗. For all ε > 0 and t > 0, there exists f ∈ D∞(T1) such that

f = h ◦Rα ◦ h−1 where h ∈ D∞(T1), h(0) = 0

and satisfying ∥∥ logDf
∥∥
Cr 6 ε ;∥∥ logDh
∥∥
C0 6 ε ;

and
∥∥D logDh

∥∥
C0 > t.

Proof. Let p/q ∈ Q satisfying, q > 2,
∣∣∣p
q
−α
∣∣∣ < 1

qk
, q and k very big (this is possible

since α is a Liouville number). Let

logDh =
ε

100
cos(2πqθ) + λ

where λ satisfies
eλ
∫
e

ε
100 cos(2πqθ)dθ = 1.

We determine f by

logDf ◦ h = logDh ◦Rα − logDh

=
ε

200

[
(e2iπqα − 1)e2iπqθ + (e−2iπqα − 1)e−2iπqθ

]
.

If q and k are big enough, one easily sees using∣∣e2iπqα − 1
∣∣ 6 constant

1

qk−1

that the inequalities of the lemma are satisfied. �

Proof of the proposition. Let d∞ be a complete metric defining the C∞ topology
of the Polish topological group D∞(T1). We will construct by induction on p > 1,

fp = hp ◦Rα ◦ h−1p , hp ∈ D∞(T1), hp(0) = 0

hp = hp−1 ◦ gp, gp ∈ D∞(T1), gp(0) = 0

such that for all p > 1:

(37)p d∞(fp, fp+1) <
1

2p
;

(38)p
∥∥ logDgp

∥∥
C0 <

1

2p
;

(39)p H2(fp) = sup
k>1

∥∥D2fkp
∥∥
C0 > p− 1 ;

(40)p fp ∈ Up ⊂ Up−1,
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Up in an open set with ∀f ∈ Up, H2(f) > p − 1, diam(Up) <
1
2p (diameter for the

metric d∞).
We choose f1 = Rα, h1 = Id and U1 =

{
f, d∞(Rα, f) < 1

2

}
.

We want to show how to pass to Step p+ 1.
If H2(fp) 6 p ; using (15) and18 the lemma, there exists gp+1 such that hp+1 =

hp ◦ gp+1, fp+1 ∈ Up and satisfies (37)p+1, (38)p+1 and (39)p+1.
If H2(fp) > p we choose gp+1 = Id.
Since the map f 7→ H2(f) ∈ R ∪ {+∞} is lower semi continuous for the C∞-

topology, we get that fp+1∈Up ∩H−12 ([p,+∞]) = Vp is a (non-empty) open set and
we can find Up+1 satisfying (40)p+1 and contained in Vp. This ends the construction
by induction of the sequence (fp)p>1.

If p −→ +∞, (fp)p>1 is a Cauchy sequence in D∞(T1) whence fp −→ f∞ ∈
D∞(T1) in the C∞ topology. By (40)p+1, we get⋂

p>1

Up = {f∞}.

If p −→ +∞, it follows from (38)p that hp −→ h∞ ∈ D1(T1) in the C1-topology and
we have f∞ = h∞ ◦ Rα ◦ h−1∞ . Il follows from (39)p and (40)p that H2(f∞) = +∞
and it follows from19 §17 that h∞ /∈ D1+Lip(T1). �

21.8 Theorem 2 applies to f ∈ Dω(T1). Unfortunately, if f ∈ Dω(T1) the author
of the present lines has not been ablet to adapt to this case the very simple argument
that we have given just before20 §21.7. The deep reason is related to the fact that
with the Cω-topology, Dω(T1) is not a Baire space nor even metrisable.21

21.9 We used the fundamental theorem22 of [H] to prove (32) and (33) but it is
not necessary if we use §17.

We have also used it to get (27) to conclude the existence of an integer l satisfying
(28) and (29). We can avoid this by replacing (27), (28) and (29) with:

(27’)
∥∥ logDfqnλ1

∥∥
C0 6

3V

an+1(β1) + 2
;

(28’)
∥∥ logDfqnλl

∥∥
C0 6

3V

an+1(βl) + 2
;

(29’)
∥∥ logDfqnλl+1

∥∥
C0 6

3V

an+1(βl+1) + 2
;

18TN : We use (15) to get (39)p+1, we do not use it on the hypothesis H2(fp) 6 p.
19TN : We use the easy implication.
20TN : I think the author meant “the very simple argument of §21.7 ».
21TN : We call today Herman numbers the class of rotation numbers rotations than ensure that any
f ∈ Dω(T1) has a Cω conjugacy h. Yoccoz proved that this class contains Liouville numbers. Even
if one uses numbers α much closer to rationnals, the construction of the lemma seems to fail: the
superficial reason is that, passing from logDf ◦ h to logDf , the composition with h−1 increases the
successive derivatives of f at least like an exponential sequence of ratio eπq . Herman chose to take h
entire but if one takes h−1 entire then it becomes possible to carry the construction: even if logDh
has a small domain of holomorphy, the fonction f has a much bigger one, provided it is defined as the
composition of the rational rotation p/q and of the time α− p/q map of the vector field defined as the
pull-back by h−1 of the trivial field d/dz. Notice the connections between Herman’s approach and the
Anosov-Katok method.
22TN : The fundamenta theorem, stated in [H,IX], says that a C∞ diffeomorphism whose rotation
number “satisfies a condition A” is automatically C∞-conjuguated to the rotation; the condition A is
defined in [H,V], these numbers are of Roth type and form a class of full Lebesgue measure. However,
the author seems to have only used the C2 character of the conjugacies hl, and uniquely for bounded
type rotation numbers. If one of them ever turns out not being C2 then we can stop the induction
there: recall that Denjoy’s inequality (4) ensures quasisymmetric conjugacy to the rotation when the
rotation number has bounded type.
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choosing C0 big enough and modifying slighlty the proofs of (32) and (33).23

22. Application to Siegel singular disks, following E. Ghys [G].

This §22 must be considered as due to E. Ghys [G] up to a few small enhancements
and a few supplementary details.

22.1 Let f : S2 → S2 be a rational map on the Riemann sphere S2 = C ∪ {∞},
of degree d > 1, leaving invariant S1 =

{
z ∈ C, |z| = 1

}
and such that f

∣∣
S1 is

an R-analytic diffeomorphism. We denote the open unit disk of C by D =
{
z ∈

C, |z| < 1
}
.

22.2 Examples:

g : z 7→ z2
1− az
z − a

with 0 < |a| < 1 and |a| < 1

3
.

For all the examples, see [H1,IV]. We have d = 2k + 1, k ∈ N∗.

22.3 If we lift f
∣∣
S1 to R into f̃ , the projection from R to S1 being given by

t 7→ e2πit, then f̃ has property A0 and µf , µ = e2πiλ, λ ∈ R gives the family
f̃ + λ ≡ Rλ ◦ f̃ .

22.4 Let µ ∈ S1 such that α = ρ(µf) ∈ T1 − (Q/Z), where ρ(µf) = ρ(µ̃f) mod
1(a), but µf is not Cω-conjugated to rα : z 7→ e2iπαz.

Let C1 =
{
c1, . . . , cq

∣∣ ci is a critical point of f and for all j > 0 f j(ci) /∈ S1
}
.

The following proposition is a small modification of an argument of P. Fatou.

22.5

Proposition. With the hypotheses of §22.4 the set

L = ωf (C1) =
⋂
N>1

⋃
j>N

f j(C1)

contains S1.

Proof. Since the closed set L is invariant by f , if L ∩ S1 6= ∅ then by Denjoy’s
theorem L ⊃ S1. If we assume by contradiction that L ∩ S1 = ∅, then we can
determine a sequence of determinations of the inverse of fn such that (f−n)n>1 are
defined for n > 1 on A = { 1r < |z| < r} where r > 1 and satisfy

f−n
∣∣
S1 = (f

∣∣
S1)−n.

The family (f−n
∣∣
A

)n>1 is normal (if r is small enough then f−n(A) avoids for all
n > 1 three distinct periodic cycles given in advance, and after conjugacy of f by
an element of PSL(2,R) we can assume that two of these cycles contain the points
0 and ∞). We lift by z 7→ e2πiz ∈ S2 − {0,∞}, f−n

∣∣
A
into f̃−n

∣∣
Ã
where

Ã =
{
z ∈ C, | Im z| < log r

}
aThe rotation number of a homeomorphism of S1 depends of the choice of an orientation of S1
and we choose the one given by t 7→ e2πit.

23TN : In reality, he already seems to have only applied §17 to justify (27), (28) and (29), and he
could directly have used (27’), (28’) and (29’). I was not able to find where he used the fundamental
theorem, nor the factor (p+ 1)2.
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and f̃−n
∣∣
R = (f̃

∣∣
R)−n. The family

hn =
1

n

n−1∑
i=0

(f̃−i
∣∣
Ã
− iα̃), α̃ = ρ(f̃)

is normal from A to S2 (i.e. equicontinuous for the compact open topology on
C0(Ã,S2)). Let (hni

)i>0 be such that hni
−→ h for the compact open topology

where 1 < ni < ni+1. On R we have

h ◦ f = R−α ◦ h, h ∈ D0(T1)

and thus24

h 6= {∞}.
On Ã we have

h ◦ f(z) = R−α ◦ h(z), z ∈ Ã
this implies that h

∣∣
R is Cω and by25 [H,IX.6.3] we conclude that h ∈ Dω(T1). This

contradicts the hypothesis we made in §22.4 and shows that L ∩ S1 6= ∅. �

Vk

lk

Figure: Example of a cover of A − Vk, in a with only one ck. Two of
the Ui are in red, two in yellow and one in pale brown.26

22.6 Remark:b even if ck is a critical point of f and lk = f j(ck) ∈ S1, we can
still define f

∣∣−n
A

if we suppose that L ∩ S1 = ∅ and r is small enough. In-
deed, if C = {critical points of f}, V C = {critical values of f} = f(C), V Cn =
V C(fn) = V C ∪ f(V C) ∪ · · · ∪ fn−1(V C)

fn : S2 − f−n(V Cn)→ S2 − V Cn is a covering.

Since f
∣∣
S1 is a Cω diffeomorphism, on a small neighborhood Vk of lk, we can choose

a determination of f−n
∣∣
V
such that f−n

∣∣
S1 = (f

∣∣
S1)−n. The we can extend (f

∣∣
S)−n

on a ring A avoiding L and
⋃
j>1

f j(C − C1) − S1 = L1 by covering A −
⋃
Vk by a

bThis argument is implicitly used several times by P. Fatou and G. Julia and we have also used it
implicitly in [H2] pages [missing pages].27

24TN : In other words, he uses that the formula defining hn is known to converge on R to the conjugacy
to the rotation.
25TN : Is there a mistake in the reference? And why is the conclusion not immediate?
26TN : I took the liberty of completing Herman’s sketch. It is possible to us fewer domains but that
is not the point here.
27TN : I was not able to find where in [H2] this implicit arguement is used.
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finite sequence of simply connected open sets Uj : in a neighborhood of lk we choose
a cover by sectors (see the figure).

22.7 The construction of Ghys.
Let f be as in §22.1 and choose µ ∈ S1 such that µf = h−1◦rα◦h, rα(z) = e2πiαz

where h is a quasi symmetric homeomorphism of S1 but so that µf is not Cω-
conjugated to Rα (it is possible by Theorem 2). By the Ahlfors-Beurling theorem
[A] or [L] there exists aK-quasi conformal homeomorphism of D such thatH

∣∣
S1 = h.

Let

t(z) = µf(z), if |z| > 1 ;

t(z) = H−1 ◦ rα ◦H, if |z| 6 1.

The continuous map t : S2 → S2 leaves invariant the following Beltrami form u,
which is mesurable, satisfies

‖u‖L∞ 6 δ < 1 where (δ + 1)(1− δ)−1 = K

and is defined as follows

u(z) =
Hz

Hz
where Hz = ∂H, Hz = ∂H and ∂ =

1

2

( ∂
∂x

+ i
∂

∂y

)
u(tn(z)) = u(z)

(fn)′(z)

(fn)′(z)
if

z ∈ Vn = t−n(D) ∩ {|z| > 1} n > 1 (we use the pairwise disjoint character of the
open sets Vn28) ; and

u(z) = 0, if z /∈ D ∪
( ⋃
n>1

Vn
)
.

Let G be the homeomorphism of S2 given by the Morrey-Ahlfors-Bers theorem [A];
it is K quasi conformal and thus absolutely continuous with respect to the Lebesgue
measure and satisfies G(∞) =∞

Gz/Gz = u(z).

The map f1 = G◦ t◦G−1 is continuous, locally quasi-conformal except at a finite
number of points, absolutely continuous on almost every line and almost everywhere
conformal. The map f1 is thus a rational map of S2.

22.8 The rational map f1 has a Siegel singular disk G(D). The open set G(D) is
indeed the connected component of S2 − J(f1) containing the linearizable elliptic
fixed point G ◦ H−1(0) of multiplier e2πiα, since µf

∣∣
S1 is not R-analytically con-

jugated to Rα. Since t is injective on a neighborhood of S1, f1 is injective on a
neighborhood of the quasi circle ∂G(D) and thus f1 has no critical point on ∂G(D).

22.9 The degree of f is of the form 2k + 1, k ∈ N∗ and that of f1 is k + 1 (we
removed the k poles or iverse images by g of {∞}, contained in D).

22.10 If we start from a C-analytic map Rλ ◦ f : C/Z → C/Z, λ ∈ R such that
on T1 = R/Z, Rλ ◦ f

∣∣
T1 is a diffeomorphism then the same construction gives an

entire map f1 : C→ C having a Siegel singular disk with the same properties as in
22.8 (we define f1 only on S2 − {∞} ∼= C).

22.11 If we start from G defined in §22.2 then for f1, the point ∞ is super
attracting and since f1 has degree 2, the map f1 is a degree 2 polynomial and thus
is conjugated by an affine transformation (i.e. z 7→ b1z + b2, b1 ∈ C∗, b2 ∈ C) to

gα : z 7→ e2πiα(z + z2).

28TN : The definition of Vn has to be slightly modified for them to be pairwise disjoint: one should
take n = the first iterate that falls in D.
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From all this the following theorem follows:

Theorem 3. There exists α ∈ R−Q such that gα is lineazisable at the point 0 and
such that its Siegel disk S satisfies:

(i) ∂S is a quasi circle;

(ii) c =
−1

2
/∈ ∂S (gα is injective on a neighborhood of S) ;

(iii) gnα(c) /∈ ∂S, for all n > 1.

Indeed, (i) and (ii) follow from §22.8 and (iii) follows from the proof of §22.5 and
§22.6.29 �

It is worth noticing that for gα the orbit of the critical point c = −1
2 will be “very

similar” to the orbit for µg of the critical point c, c 6=∞, |c| > 1 (the critical points
of µg are c, 1/c, 0 and ∞).

22.12 By the result of [G] or [H2] the number α ∈ R − Q does not satisfy a
diophantine condition.

We recall that if α is a Brjuno number:∑
k>0

log qk+1

qk
< +∞

where qk are the denominators of the convergents of α and if f1(z) = e2πiαz+O(z2)
is a germ of C-analytic map at 0 then f is lineazisable at 0 (Siegel-Brjuno theorem
[B]).

22.13

Proposition. Let α be the number given by Theorem 3, then one of the following
claims is true
(i) α is not a Brjuno number ;
(ii) there exists an R-analytic diffeomorphism f of T1 such that ρ(f) = α is a
Brjuno number but f is not Cω conjugated to Rα.

Proof. If both (i) and (ii) are false then the same proof as in [G] or [H2], using
not-(ii), implies in Theorem 3 that c ∈ ∂S. �

The author, as he writes the present lines, does not have any opinion on which
of the claims of §22.13 is true30 ((i) implies unexpected cancellations, see [Y3], and
not-(ii) holds if f is a perturbation of Rα for the Cω topology).

22.14

Proposition. There exists a non-linear entire map f1 = e2πiαz + O(z2), z −→ 0
such that
(i) f ′1(z) 6= 0, for all z ∈ C ;
(ii) f1 is lineazisable at 0 and the Siegel singular disk S of f1 has compact closure
in C and f1 is injective in a neighborhood of S.

Proof. We use the construction of 22.10 starting from f such that

Df(θ) = ea sin(2πθ)+c, where a ∈ R∗

29TN : Point (iii) immediately follows from §22.5 for t, and thus for f1 by the conjugacy. The proof
of §22.5 (proof that includes the argument given in §22.6) can be adapted to deduce (iii) from (ii)
without using t.
30TN : We know today that the true fact is point (ii). Yoccoz has indeed proved the optimality of the
Brjuno for the quadratic family.
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and c ∈ R satisfies ∫ 1

0

ea sin(2πθ)+cdθ = 1.

�

22.15

Proposition. There exists a univalent holomorphic map G : D→ C with G(0) = 0,
G′(0) = e2πiα, α ∈ R − Q, G is lineazisable at 0 and the maximal linearization
domain of G, S1 satisfies S1 ∩ ∂D = ∅.

Proof.31 We conjugate, using the conformal representation theorem, the map gα
given by Theorem 3, remarking that gα is injective on a small simply connected
open neighborhood V of S and satisfies gα(S) = S. (32) �

From [G] or [H2] it follows that 22.14 and 22.15 are false if α satisfies a diophan-
tine conditions.

22.16 Remark. In Ghys’ construction 22.7, if ρ(µf) = α ∈ T1 − (Q/Z) then µf
is not generally quasi symmetrically conjugated to Rα (cf. §8) but by the theorem
of Denjoy µf is topologically conjugated to Rα: µf =h−1 ◦Rα ◦ h. We can extend
h into a C1 diffeomorphism of D and then define a continuous map t : S2 → S2.
Generally t is not topologically conjugated to a rational map for otherwise f1 would
have a lineazisable elliptic fixed point of multiplier e2πiα yet this does not hold for α
belonging to a Gδ dense subset G of T1 (the set G does not depend on the rational
map f) cf. [H1,VIII.15].

Question. Find a necessary and sufficient condition for t to be topologically con-
jugated to a rational map on the Riemann sphere.

23. Generalisations of the construction of E. Ghys.

Let f be like in §22.1 and µ such that µf satisfies the conclusions of Theorem 2
and α = ρ(µf

∣∣
S1).

Proposition. There exists a rational map f1 of the same degree as f , leaving S1
invariant, with ρ(f1

∣∣
S1) = α, having a singular ring A that contains S1 (A is a

connected component of S2 − J(f1)) and such that f1 has no critical point on ∂A
and ∂A is the union of two disjoint quasi circles.

Proof. Let 0 < t < 1 be given, we define

g1(z) =
1

t
µf(tz) |z| > 1

t

g1(z) =
1

g1(1/z)
|z| 6 t.

Let H : {t 6 |z| 6 1
t } → {t 6 |z| 6

1
t } = B be a quasi conformal homeomorphism

such that:

31TN : There is a problem in this proof, see the next footnote.
32TN : There is no reason for the conformal map from V to D to have an extension to V ∪ gα(V )
taking values in C. A priori we only get a G : U → D with U ⊂ D, not a G : D → C. It is not clear
that one can ensure that the domain of G is D. One would like to send V ∪ gα(V ) in C so that V is
sent to D and 0 to 0. Thus at least ∂V should be analytic on the part inside gα(V ). We may as well
take the whole boundary ∂V analytic but this is not sufficient.
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H commutes with z 7→ 1/z

H ◦ rα ◦H−1(z) = g1(z), z ∈ ∂B.
This is possible since (µf)

∣∣
S1 is quasi symmetrically conjugated to rα : z 7→ e2πiαz.

We define
T1(z) = g1(z), if |z| > 1

t
or |z| 6 t

and
T1(z) = H ◦ rα ◦H−1(z), if t 6 |z| 6 1

t
.

By construction, T1 commutes with the conformal orientation reversing involution:
z 7→ 1/z. By the same argument as in §22.7, T1 leaves invariant a Beltrami form u.
We can therefore conjugate T1 by a quasi conformal homeomorphism to a rational
map g and we can choose u so that g commutes with an involution j, which is
conjugated to z 7→ 1/z, conformal and thus j ∈ PGL(2,C) we can conjugate j by
an element h ∈ SL(2,C) to h−1 ◦ j ◦ h(z) = 1/z and f1 = h ◦ g ◦ h−1 satisfies all the
conclusions of the proposition. �

24. If we started from µf = µz2
1− az
z − a

, f1 would have the same form for some µ1,

µ1 ∈ S1 and a1 ∈ C, 0 < |a1| < 1
3 .

Conclusion. The existence of a singluar ring for a rational map does not only
depend on the arithmetical properties of the rotation number but also on the rational
map (i.e. on the values of the coefficients of P and Q such that f = P/Q where P
and Q are relatively prime polynomials of degree 6 d).

25. Let f be as in §22.1 and let µ ∈ S1 such that ρ(µf) satisfies a diophantine
condition. Then by the result of J.C. Yoccoz [Y2] the map µf

∣∣
S1 is Cω conjugated

to rα(z) = e2πiαz. From this, it follows that µf has a singular ring containing S1.
This ring will disappear if µf

∣∣
S1 is only an (analytic S1) homeomorphism i.e. µf

has a critical point on S1. For many examples the reader is invited to see [H1,IV].

For instance if f = z2
1− az
z − a

, if aa = 1
9 then f

∣∣
S1 is a homeomorphism having a

double critical point on S1. J.C. Yoccoz proved [Y4] that if µf
∣∣
S1 is an (analytic)

homeomorphism and ρ(µf
∣∣
S1) ∈ T1 − (Q/Z) then µf

∣∣
S1 is topologically conjugated

to Rα. Generally f
∣∣
S1 is not quasi symmetrically conjugated to a rotation (cf. §8).

Question. 33 If ρ(µf
∣∣
S1) = α is a bounded type number, is µf

∣∣
S1 quasi symmetri-

cally conjugated to Rα ?

26. The following proposition has been obtained independently by Adrien Douady:

Proposition. Let µf
∣∣
S1 be an analytic homeomorphism having a critical point on

S1 and such that (µf)
∣∣
S1 is quasi symmetrically conjugated to Rα, α ∈ T1 − (Q/Z)

then there exists a rational map g having Siegel disk S associated to a lineazisable
fixed point of g, of multiplier e2πiα, such that ∂S is a quasi circle and such that
there exists a critical point of g on ∂S.

33TN : The answer is positive, as proved by Herman and Świa̧tek in subsequent work. These works
were possible thanks to the introduction of the schwarzian derivative, an analogue of higher order to
the distortion derivative D logDf .
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The proof is almost identical to that of §22.7 and §22.8. �

Sequel in the next issue.
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