Présence d'un point critique au bord des disques de Siegel des polynômes bicritiques

Arnaud Chéritat and Pascale Roesch

CNRS, Univ. Toulouse

Nice, 15 mars 2010

Théorème (Arnol'd)

Pour tout θ diophantien et h>0, il existe $\varepsilon>0$ tel que tout difféomorphisme analytique f de \mathbb{R}/\mathbb{Z} de nombre de rotation θ et qui possède un prolongement à une bande de hauteur h et vérifie $|f(x)-x|<\varepsilon$ sur \mathbb{R}/\mathbb{Z} est analytiquement linéarisable.

Théorème (Herman)

Pour tout θ diophantien, l'hypothèse $|f(x) - x| < \varepsilon$ est superflue.

Yoccoz a ultérieurement démontré caractérisé l'ensemble ${\mathcal H}$ des nombres de rotation pour lesquels tout difféomorphisme analytique est analytiquement linéarisable. Il les a appelé *nombres de Herman*.

Théorème (Ghys)

Si P est un polynome ayant un disque de Siegel Δ de nombre de rotation dans $\mathcal H$ et si $\partial \Delta$ est une courbe de Jordan alors $\partial \Delta$ contient un point critique.

Théorème (Herman)

Soit f holomorphe sur un ouvert Ω . S'il y a un domaine de rotation de nombre de rotation dans $\mathcal H$ et ayant une composante X de son bord compactement incluse dans Ω , alors f n'est pas injective au voisinage de X.

Note : f n'est pas injective au voisinage de $X \iff (f \text{ a un point critique dans } X)$ ou (la restriction de f à X est non-injective).

Théorème (Herman)

Si P est un polynôme unicritique $(z^d + v)$ et si Δ est un disque de Siegel de nombre de rotation dans $\mathcal H$ alors le point critique est au bord de Δ .

Mais on ne sait pas si la restriction f à $\partial \Delta$ est injective.

Preuve : Soit Δ le "rempli" de $\overline{\Delta}$. Soit c le point critique et v la valeur critique. 3 cas :

- ① $v \notin \widehat{\Delta}$ alors f est injective sur $\partial \Delta$: contradiction avec $\theta \in \mathcal{H}$.
- ② $v \in \widehat{\Delta} \setminus \partial \Delta$: contradiction avec un thm de Fatou: $\partial \Delta \subset \omega(c)$ + classification des composantes Fatou/Sullivan.
- $v \in \partial \Delta$.

Théorème (Herman)

Si P est un polynôme unicritique $(z^d + v)$ et si Δ est un disque de Siegel de nombre de rotation dans $\mathcal H$ alors le point critique est au bord de Δ .

Mais on ne sait pas si la restriction f à $\partial \Delta$ est injective.

Preuve : Soit $\widehat{\Delta}$ le "rempli" de $\overline{\Delta}$. Soit c le point critique et v la valeur critique. 3 cas :

- **1** $v \notin \widehat{\Delta}$ alors f est injective sur $\partial \Delta$: contradiction avec $\theta \in \mathcal{H}$.
- ② $v \in \widehat{\Delta} \setminus \partial \Delta$: contradiction avec un thm de Fatou: $\partial \Delta \subset \omega(c)$ + classification des composantes Fatou/Sullivan.
- $\mathbf{0}$ $v \in \partial \Delta$.

Théorème (C, R)

Si P est un polynôme ayant deux points critiques et si Δ est un disque de Siegel de nombre de rotation dans $\mathcal H$ alors au moins l'un des points critiques est au bord de Δ .

Preuve: Soit $\widetilde{\Delta}$ la composante connexe de $P^{-1}(\widehat{\Delta})$ qui contient $\widehat{\Delta}$. Soit n_0 le nombre de point critiques dans $\widetilde{\Delta}$. Si on prend un suffisamment petit voisinage simplement connexe U de $\widehat{\Delta}$ et V la composante connexe de $P^{-1}(\Delta)$ qui contient $\widetilde{\Delta}$ alors $P:V\to U$ est un revêtement ramifié possédant n_0 points critiques. 3 cas :

- **1** $n_0 = 0$: alors P est injective sur $\partial \Delta$.
- ② $n_0=2$: on conclut comme dans le cas unicritique, mais avec le théorème de Mañé : il existe un point critique c récurrent tel que $\partial \Delta \subset \omega(c)$.
- $0 n_0 = 1 : le cas nouveau.$

Cas $n_0 = 1$. La preuve va consister en :

- \bullet Supposer par l'absurde qu'il n'y a pas de point critique au bord de $\Delta.$
- (A) Démontrer que $\widetilde{\Delta} = \widehat{\Delta}$, c'est à dire $\widehat{\Delta}$ est localement totalement invariant.
- Conjuguer P par la représentation conforme du complémentaire de $\widehat{\Delta}$ vers le complémentaire de $\overline{\mathbb{D}}$ dans \mathbb{C} .
- Obtenir par réflexion de Schwarz un revêtement analytique localement difféo de S^1 dans S^1 : ϕ .
- (B) Utiliser un autre théorème de Mañé pour démontrer que ϕ est expansif.
- Ce qui signifie que P est une application à allûre polynomiale, au voisinage de $\widehat{\Delta}$.
- On est donc ramené au cas unicritique, déja résolu, donnant une contradiction.

Invariance locale de Δ

Les composantes connexes bornées de $\mathbb{C}\setminus\overline{\Delta}$ sont des composantes de Fatou. Ces composantes sont préperiodiques. Le lemme de séparation de Kiwi, Poirier, Goldberg-Milnor implique que ces composantes finissent par tomber dans Δ .

Le revêtement ramifié $P: V \to U$ est équivalent à $z \mapsto z^d$ avec d > 1.

Rappelons qu'on suppose par l'absurde qu'il n'y a pas de point critique au bord de Δ . Donc ν n'y est pas non plus (cf ci-dessus). Donc ν est dans une composante cachée par $\overline{\Delta}$.

Cette composante a ses itérées également cachées, et finit par tomber dans Δ . Juste avant, elle est une composante de $P^{(-1)}(\Delta)$: $\overline{\Delta}$ cache une composante de $P^{(-1)}(\Delta)$.

Par symétrie (le groupe d'automorphismes du revêtement) et avec un peu de topologie si $d \geq 3$, on en conclut que toutes les composantes de $V \cap P^{(-1)}(\Delta)$ se cachent les unes les autres (lacs de Wada).

